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Abstract
Many materials containing colloids or polymers are polydisperse: they
comprise particles with properties (such as particle diameter, charge, or polymer
chain length) that depend continuously on one or several parameters. This
review focuses on the theoretical prediction of phase equilibria in polydisperse
systems; the presence of an effectively infinite number of distinguishable
particle species makes this a highly non-trivial task. I first describe qualitatively
some of the novel features of polydisperse phase behaviour, and outline a
theoretical framework within which they can be explored. Current techniques
for predicting polydisperse phase equilibria are then reviewed. I also discuss
applications to some simple model systems including homopolymers and
random copolymers, spherical colloids and colloid–polymer mixtures, and
liquid crystals formed from rod- and plate-like colloidal particles; the results
surveyed give an idea of the rich phenomenology of polydisperse phase
behaviour. Extensions to the study of polydispersity effects on interfacial
behaviour and phase separation kinetics are outlined briefly.

1. Introduction and scope

Statistical mechanics was originally developed for the study of large systems of identical
particles such as atoms and small molecules. However, many materials of industrial and
commercial importance which contain colloidal particles or polymers do not fit neatly into
this framework. For example, the particles in a colloidal suspension are never precisely
identical to each other, but have a range of radii (and possibly surface charges, shapes, etc).
Industrially produced polymers always contain macromolecules with a range of chain lengths;
and hydrocarbon mixtures occurring in the petrochemical industry often consist of a large
number of different molecular species best described as having continuously varying properties
across each family of molecules. All these materials are therefore polydisperse: they contain
particles with properties depending continuously on one or several parameters.

In this review, I will focus on the effects of polydispersity on phase behaviour: to process
a colloidal or polymeric material, one needs to know under which conditions of pressure
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and temperature it will be stable against demixing, how many phases will result if it does
demix, and what their properties are. The emphasis will be on the problem of predicting such
phase behaviour theoretically, although I will complement this by references to experimental
observations and the results of computer simulations where appropriate. I will concentrate
almost exclusively on bulk phase equilibria, giving only the briefest outlook towards the
treatment of inhomogeneous systems (interfacial behaviour, etc) and the challenging topic
of phase separation kinetics in section 5. Finally, I will only discuss the case of fixed
polydispersity, where the polydisperse attribute of each particle remains fixed once and for
all. This includes all the examples given above; the length of a polymer molecule or the size
of a colloidal particle, for example, do not change over time. The contrasting case of variable
polydispersity is exemplified by a surfactant solution in which the surfactant molecules form
worm-like micelles whose lengths constantly change due to scission and recombination [1].
Systems of this kind have been treated theoretically (see e.g. [2–4] for a recent example) but
will be excluded below because their phase behaviour is much less complex than that of systems
with fixed polydispersity; the reasons for this are explained in section 2.

In this review, I will first explain why polydisperse phase equilibria are challenging to
predict, describe some of the new effects that can occur, and outline a theoretical framework
within which they can be explored (section 2). Then I will give an overview of some current
techniques for predicting polydisperse phase equilibria (section 3). Applications to some
simple model systems are discussed in section 4, with the aim of giving an idea of the
rich phenomenology of polydisperse systems. Section 5 describes briefly the considerable
challenges that one faces when looking at polydispersity effects on interfacial behaviour and
phase separation kinetics.

Because of the volume of the literature, I will not attempt to give a historical account of
the development of theoretical work on polydisperse phase behaviour. The following, very
selective, sketch will have to suffice: de Donder’s work in the 1920s on many-component
mixtures [5] is often cited as an early and important precursor. From the 1940s onwards,
there were significant contributions in the area of polydisperse (homo- and co-)polymers,
associated with the names of Flory, Huggins, Koningsveld, Scott, Solc, and Staverman [6–13]
among many others. Around the same time, the concept of polydispersity also appeared in
the treatment of the distillation of multi-component hydrocarbon mixtures (see e.g. [14, 15]).
Since then polydispersity has been recognized as important in many other contexts, notably
the phase behaviour of suspensions of spherical [16,17] and non-spherical (e.g. rod-like [18])
colloidal particles.

2. Polydisperse phase equilibria

2.1. The challenge

To understand why the prediction of phase equilibria in polydisperse systems is a challenging
problem, it is useful to recall first the procedure for a monodisperse system. In a suspension
of identical colloidal particles, for example, the experimentally controlled variables would be
the temperature T , the suspension volume V , and the number N of colloidal particles; the
appropriate thermodynamic ensemble is therefore the canonical one, and the thermodynamic
potential is the Helmholtz free energy F(N, V, T ). Here I assume (and will do so throughout
in what follows) that the solvent degrees of freedom have been formally eliminated, so that F
includes the effects of the solvent only through any effective interaction it may mediate between
the colloids. The suspension will separate into two phases with particle numbers N(α) and
volumes V (α) (α = 1, 2) if it can thereby lower its total free energy

∑
α F (N(α), V (α), T )
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Figure 1. The double-tangent construction for finding phase equilibria (for monodisperse systems).
Shown is a sketch of a free energy density f versus particle density ρ (solid curve) and the double
tangent to it (dashed line). The tangency points identify the densities ρ(1) and ρ(2) of the coexisting
phases. The slope and the negative intercept of the tangent give the chemical potential µ and the
osmotic pressure �, respectively; both are common to the coexisting phases. A parent phase with a
density intermediate between ρ(1) and ρ(2) will phase separate into two phases with these densities,
thereby lowering the total free energy of the system.

below the value F(N, V, T ). The N(α) and V (α) adopt the values which minimize this
total free energy, subject to conservation of volume (

∑
α V (α) = V ) and particle number

(
∑

α N(α) = N ). Introducing Lagrange multipliers for these constraints then gives the familiar
coexistence conditions of equal chemical potential µ = ∂F/∂N and pressure � = −∂F/∂V

in the two phases. (Because of the elimination of the solvent degrees of freedom, � is actually
the osmotic pressure of the colloids, rather than the total suspension pressure.)

Since the free energy is extensive, it can be written as F(N, V, T ) = Vf (ρ, T ) where
ρ = N/V is the (number) density of colloids. In terms of the free energy density f (ρ, T ),
the coexistence condition has a simple geometrical interpretation. From the definition of f ,
one has µ = ∂(Vf (N/V, T ))/∂N = ∂f/∂ρ and

� = − ∂

∂V
(Vf (N/V, T )) = −f + ρ ∂f/∂ρ = −f + µρ (1)

(the latter result can also be seen directly from the Gibbs–Duhem relation F +�V −µN = 0).
Plotting f as a function of ρ as in figure 1, one sees that µ gives the slope of the tangents to the
plot at the densities of the two coexisting phases, and that −� is their intercept with the f -axis.
Since µ and � are equal, so are the tangents themselves: the densities ρ(1) and ρ(2) of the
coexisting phases are determined by constructing a double tangent to f (ρ, T ) (see e.g. [19]).
From these densities one can then find the fraction of the system volume v(α) = V (α)/V

occupied by each phase, by using particle conservation: dividing
∑

α N(α) = N by V one has∑
α(V

(α)/V )(N(α)/V (α)) = N/V or
∑

α v(α)ρ(α) = ρ; for two phases, using v(1) + v(2) = 1,
this gives the well-known ‘lever rule’ v(1) = (ρ − ρ(2))/(ρ(1) − ρ(2)).

Moving towards the polydisperse case, assume now that there are M different species of
colloid particles, each with its own particle number Ni and corresponding density ρi = Ni/V .
All densities are conserved, so∑

α

v(α)ρ
(α)
i = ρi (2)
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if the system separates into several phases. The free energy density f ({ρi}) is now a function
of all M densities, as well as the fixed temperature T which I suppress from now on in the
notation. (I will also call f simply the free energy rather than the free energy density where
no misunderstanding is possible.) A plot of f ({ρi}) against the densities ρi would give a
(hyper-)surface in a graph with M + 1 coordinate axes, and to find phase coexistences we
would have to construct multiple tangent (hyper-)planes to this surface. Where such tangent
planes exist, the total free energy is lowered by phase separation into the appropriate number
of phases (which, from Gibbs’ phase rule, can be between two and M + 1). The densities ρ

(α)
i

in the different phases are given by the points where the tangent plane touches the free energy
surface, and the fractional phase volumes v(α) follow from the conditions (2) together with∑

α v(α) = 1.
Now consider the fully polydisperse case. Let σ be the polydisperse attribute of the

particles, e.g. the particle diameter in spherical colloids or the chain length in polymers. To
fully describe the composition of the system we now need a density distribution ρ(σ), defined
such that ρ(σ) dσ is the density of particles with σ -values in the range [σ, σ + dσ ]. Formally,
this corresponds to a scenario with an infinite number of particle species, as can be seen by
splitting the range ofσ intoM ‘bins’, defining theρi to be the densities within each bin, and then
taking M → ∞ (see e.g. [20]). The tangent plane procedure for finding phase coexistences
then clearly becomes unmanageable, both conceptually and numerically: one would have to
work in an infinite-dimensional space—which mathematically corresponds to the fact that the
free energy becomes a functional f ([ρ(σ)]) of the density distribution ρ(σ)—and Gibbs’
phase rule allows the coexistence of arbitrarily many thermodynamic phases.

In summary, then, the challenge in predicting polydisperse phase equilibria arises from
the effectively infinite number of conserved densities. This renders the standard approaches
developed for mixtures with a finite number of species useless. Note that the difficulty that I
am talking about here is that of determining the phase equilibria from a free energy (functional)
which is assumed known. The calculation of this free energy (or at least of a good approximation
to it) is a different—and no less challenging—problem that I will not address in this review.
So, in what follows, I will regard each model free energy as given, and do not discuss in detail
the issue of how good a description of the real system it offers, nor how or whether it can be
derived from an underlying microscopic Hamiltonian. Whenever I refer to ‘exact’ results, I
mean the exact thermodynamics of such a model as specified by its free energy.

Finally, having established the presence of an infinite number of conserved densities as
the principal obstacle in the prediction of polydisperse phase behaviour, one easily sees why
variable polydispersity is so much easier to deal with: there, one normally fixes the ratios of
the densities ρi of the various species to each other in the low-density limit [2,3]. (In the fully
polydisperse case this corresponds to fixing in the same limit the shape, but not the overall
scale, of the density distribution ρ(σ).) However, in this limit the densities are directly related
to the chemical potentials, and so one is effectively fixing all chemical potential differences.
The thermodynamic variables are then N , V , T and the chemical potential differences, and
so there is only a single conserved density, just as in the monodisperse case. So, while the
actual determination of the relevant (semi-grandcanonical) free energy function might still be a
challenging problem, once this function is found the determination of the phase behaviour can
proceed by a standard double-tangent construction, and Gibbs’ phase rule remains the same
as for a monodisperse system.

2.2. Polydispersity gives rich phase behaviour

To try to understand the qualitative features of polydisperse phase behaviour, it is useful to
consider first a bidisperse system (with two particle species), for which it is still possible
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Figure 2. Top: a schematic phase diagram for a bidisperse system. The surface shown in this
ρ1–ρ2–T plot delimits the region where phase separation into two phases occurs. The vertical
plane corresponds to systems on a ‘dilution line’, for which the composition is fixed (here: the same
number of particles of species 1 and species 2) but the overall density can vary. The intersection of
this plane with the phase boundary gives the cloud curve shown in figure 3. Bottom left: a horizontal
cut through the phase diagram, corresponding to a fixed value T1 of the temperature. The dashed
line is the dilution line. The filled circles, marking the points where the dilution line intersects the
phase boundary, give the densities (ρ1, ρ2) in the cloud phases, which by definition begin to phase
separate at the given temperature T1. Tie lines connect the cloud phases with the coexisting shadow
phases (empty circles); these have different compositions from the cloud phases since they are not
located on the dilution line. Bottom right: the situation for a lower temperature T2. Phase B, which
at T1 had separated off an infinitesimal amount of B′, has now separated into two phases C′ and C′′
which are both present in non-zero amounts; neither of them has the same composition as B.

to represent the full ρ1–ρ2–T phase diagram graphically. A schematic example of such a
phase diagram—inspired by the phenomenology of binary liquids—is shown in figure 2, with
some tie lines drawn that connect coexisting phases. (A nice illustration based on the Flory–
Huggins theory of polymer solutions is given in [21].) Assume the overall densities of the two
particles species are ρ

(0)
1 and ρ

(0)
2 ; I use the ‘(0)’ superscript here to distinguish the properties
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Figure 3. Left: cloud (solid) and shadow (dashed) curves, schematically drawn for the phase
diagram of figure 2. On the x-axis is the total particle number density ρ = ρ1 + ρ2; points
corresponding to those in figure 2 are labelled with the same letters. The dash–dotted curves are
the coexistence curves for the parent phase B, giving the densities of the phases into which B
separates as the temperature is decreased. Right: the spinodal curve and critical point for the
same phase diagram. The critical point lies at an intersection of the cloud and shadow curves; the
spinodal (dotted) lies inside the cloud curve and touches it at the critical point.

of this ‘parent’ phase from other generic values of ρ1 and ρ2. At high temperatures, the given
composition of the system will be stable as a single phase. As T is lowered, however, the
system will eventually become able to reduce its total free energy by separating into several
(in this case: two) phases. The first temperature where this happens defines the so-called
‘cloud point’. At this point, the parent coexists with an infinitesimal amount of a new phase,
called the ‘shadow’ phase [10, 11]. One can repeat this procedure of finding the onset of
phase coexistence for a different parent, obtained by diluting with additional solvent; this just
changes the total density ρ

(0)
1 + ρ

(0)
2 but preserves the ratio of the densities of the two species.

Plotting the cloud point temperature against the total parent (cloud phase) density and against
the total density of the shadow, for a series of such diluted parents, one obtains the so-called
cloud curve and shadow curve, respectively (figure 3). In a monodisperse system, these two
curves would coincide, with a critical point at the maximum. In the bidisperse (and more
generally the polydisperse) case, however, the cloud point and shadow curve are different, and
the critical point occurs at a crossing of the two curves.

To understand this difference between monodisperse and polydisperse systems, it is useful
to bear in mind that the set of parent phases whose behaviour is represented by the cloud curve
have values of ρ1 and ρ2 which lie on a line through the origin in the ρ1–ρ2 plane. At a
given temperature, the cloud point phases are found as the intersections of this ‘dilution line’
with the boundaries of the region where phase coexistence occurs, while the corresponding
shadow phases are given by the opposite ends of the tie lines starting at the cloud point phases
(see figure 2). In general, the shadows therefore do not lie on the dilution line; compared to
the dilution line composition which all cloud phases share, the shadow phases have become
enriched in one or the other of the two species, a process normally referred to as ‘fractionation’.
Thus, in contrast to the case for a monodisperse system, the roles of cloud and shadow phases
cannot be reversed, and cloud and shadow curves are therefore in general different. The fact
that the critical point is located at a crossing of the cloud and shadow curves (rather than at
their maximum) follows because at criticality cloud and shadow are by definition identical.

It is also sometimes useful to consider spinodals in a polydisperse system; these are the
points where (as temperature is varied, for example) a given parent phase first becomes unstable
to local density fluctuations. Determining the spinodal points for all parents on a dilution line
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Figure 4. Left and middle: constant-temperature slices through the phase diagram of a bidisperse
system, with two- and three-phase regions as indicated. On the left, the dilute cloud phase A
(solid circle) begins to phase separate by splitting off a denser phase A′ containing predominantly
particles of species 2. On changing T (middle plot), the corner of the three-phase triangle may
pass through the dilution line (dashed); at this point, the cloud phase is at a triple point and the
properties of the shadow phase change discontinuously, here to a dense phase B′ richer in particles
of species 1. Right: schematic cloud and shadow curves for this situation, showing the jump in the
shadow curve at the triple point. The cloud curve must be continuous but generally has a kink at
the triple point, where it switches between different branches corresponding to separate two-phase
regions in the phase diagram.

gives a spinodal curve which can be plotted along with the cloud and shadow curves. By
construction, outside the cloud curve single phases are stable against phase separation, so the
spinodal curve must lie inside the cloud curve; the critical point always lies on the spinodal
curve (since the shadow phase there can be generated by an infinitesimally small fluctuation)
and so the spinodal and the cloud curve touch there (see figure 3).

Beyond the onset of phase coexistence, polydisperse phase behaviour becomes yet more
complex. Continuing with our bidisperse example, a given parent phase will start to phase
separate at the cloud point as T is lowered. For lower temperatures, two phases will coexist
in finite amounts; at each given T , the densities ρ1 and ρ2 in these phases can be found from
the ends of the unique tie line (in the ρ1–ρ2 plane) that passes through the parent. Neither
of the coexisting phases will therefore be on the dilution line (see figure 2), and both will
contain different fractions of particles of the two species; only the overall composition across
the two phases will be maintained. Plotting the temperature against the total density of the
two phases would generate two ‘coexistence’ curves which begin on the cloud and shadow
curve, respectively (see figure 3). Each parent on the dilution line will generate its own set of
coexistence curves, all beginning at different points on the cloud and shadow curves.

So far I have only discussed situations where at most two phases coexist once phases
separation occurs. In a polydisperse system, this need not be the case, of course; as discussed
above, there is no a priori limit on the number of coexisting phases. To see the qualitative effect
of this on the representations of phase behaviour described above, let us return to the bidisperse
case, but now with a different phase diagram, shown in figure 4. This phase diagram topology
could occur in, for example, a binary liquid whose constituent particles ‘dislike’ each other;
in addition to the usual gas–liquid phase coexistence one can then also have demixing into
two liquids containing predominantly one of the particle species, and three-phase coexistence
between a gas and two such demixed liquids. A dilute cloud phase may then begin to phase
separate by splitting off either one of these demixed liquids, depending on the relative positions
of the dilution line and the three-phase triangle (see figure 4). As temperature is varied, a corner
of the three-phase triangle may move through the dilution line. At the temperature where this
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happens, the cloud phase is at a triple point, and separates off infinitesimal amounts of two
different shadow phases; as T is increased or decreased through the triple point, the properties
of the shadow phase therefore ‘switch’ discontinuously. This implies that the shadow curve
will exhibit a jump discontinuity, while the cloud curve remains connected as it must but will
have a kink where the shadow curve jumps (see figure 4). The coexistence curves also become
more complex: a parent may initially separate into two phases, but then demix into three (or
more, in the fully polydisperse case) as T is lowered further; at the points where new phases
appear, the coexistence curves acquire new branches. For even lower temperatures, the number
of phases may increase yet further, or decrease again. It is in fact an entirely open problem to
predict from the form of the free energy the maximum number of phases into which a given
polydisperse parent phase will separate.

One final new feature in the phase behaviour of polydisperse systems is the possibility of
encountering critical points of arbitrary order. Such critical points are specified by a density
distribution ρ(σ) and a temperature T ; their defining property is that, at those parameters, a
single phase separates into n infinitesimally different phases (on lowering T , for example).
Thus n = 2 is an ordinary critical point, n = 3 a tricritical point, and so on [22, 23]. Since
there is no limit on the number of coexisting phases, it is intuitively clear that there is also no
upper limit on the order of critical points that can occur in polydisperse systems. We will see
a concrete example of this below, for a simple model of a random copolymer blend.

2.3. Formulating the general phase equilibrium problem

The statistical mechanics of polydisperse systems is also known as ‘continuous
thermodynamics’ (see e.g. [24]). It is often useful to separate off the ideal part of the free
energy (density) explicitly by writing (with kB = 1)

f ([ρ(σ)]) = T

∫
dσ ρ(σ)[ln ρ(σ) − 1] + f̃ ([ρ(σ)]). (3)

This defines the excess free energy f̃ ; both f and f̃ are functionals of the density distribution
ρ(σ) (and also functions of the externally fixed temperature, which I will not write explicitly).
The ideal part is the free energy of an ideal polydisperse gas; it can be derived as the limiting
form (up to an irrelevant—infinite—constant term [20]) of the free energy of an ideal mixture
of M species, which is T

∑
i ρi[ln ρi − 1]. Here the ρi are again the number densities inside

M ‘bins’ into which the range of σ has been partitioned, and the number of bins is taken to
infinity after the thermodynamic limit has been performed. In an alternative derivation of the
polydisperse limit, one can assume from the start that all particles are genuinely different, with
σ sampled randomly from the normalized density distribution, so that the number of distinct
‘species’ is always N and is taken to infinity together with the system size. The two procedures
give equivalent results [25]; an elegant derivation of the ideal part of the free energy within
the second approach was given by Warren [26]. Note that the first limit is physically more
plausible for many homopolymer systems (where there may only be thousands or millions of
species, with many particles of each) whereas the second limit is more natural for colloidal
materials (and also some random copolymers) in which no two particles present are exactly
alike, even in a sample of macroscopic size.

From the free energy (3), the chemical potentials follow by (functional) differentiation as

µ(σ) = δf

δρ(σ )
= T ln ρ(σ) + µ̃(σ ) µ̃(σ ) = δf̃

δρ(σ )
. (4)
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The pressure is, by analogy with (1),

� = −f +
∫

dσ µ(σ)ρ(σ ) = Tρ0 − f̃ +
∫

dσ µ̃(σ )ρ(σ ) (5)

where

ρ0 =
∫

dσ ρ(σ) (6)

is the total number density of particles. Though not written explicitly, both µ(σ) and
� are functionals of ρ(σ), and ordinary functions of T . Note also that, in order avoid
‘dimensional crimes’ in the logarithms in f and µ(σ), equations (3), (4), one should really
divide the argument ρ(σ) by a quantity with the same dimensions, with e.g. making the
replacement ρ(σ) → v0σ0ρ(σ) (where v0 and σ0 are chosen unit values of volume and of σ )
or ρ(σ) → ρ(σ)/R(σ) where R(σ) is a fixed density distribution. As can be seen from (4),
however, any such replacement would only add a [ρ(σ)]-independent term to the chemical
potentials and so would not affect the predicted phase equilibria; we can therefore proceed
without it. (In the moment free energy method to be described below, however, the fact that
an arbitrary R(σ) can be chosen to non-dimensionalize ρ(σ) will be of crucial importance.)

Assume now that a given parent phase with density distribution ρ(0)(σ ) separates into
P phases, labelled as before by α = 1, . . . , P and with density distributions ρ(α)(σ ). Then
the chemical potentials µ(σ) and the pressure � need to be equal in all phases, and the total
number of particles of each species σ must be conserved, implying that∑

α

v(α)ρ(α)(σ ) = ρ(0)(σ ) (7)

where, as in (2), v(α) is the fraction of the system volume occupied by phase α.
From (4), it follows that ρ(α)(σ ) = exp[βµ(σ)] exp[−βµ̃(α)(σ )], where β = 1/T and

µ̃(α)(σ ) is the excess chemical potential of species σ in phase α. Inserting into the particle
conservation law (7), one can eliminate exp[βµ(σ)] and write the density distributions in the
coexisting phases as

ρ(α)(σ ) = ρ(0)(σ )
exp[−βµ̃(α)(σ )]∑

γ v(γ ) exp[−βµ̃(γ )(σ )]
. (8)

The P unknown fractional phase volumes can then in principle be determined from the
equality of the pressure in all phases and from the identity

∑
α v(α) = 1. However, in (8)

we have achieved no more than a formal solution of the problem, since the excess chemical
potentials µ̃(α)(σ ) are still functionals of the unknown density distributions ρ(α)(σ ) (so, if these
functionals can be written as integrals, equation (8) corresponds in effect to P coupled non-
linear integral equations [27]). Even if a valid solution for a phase split into P phases could be
determined numerically, one would still need to verify that it is thermodynamically stable, i.e.
that it gives the lowest possible total free energy; this problem is exacerbated in a polydisperse
system by the potentially unlimited number of coexisting phases. In principle, the criterion
for stability is that no part of the free energy surface ‘pokes through’ below the calculated
tangent plane; equivalently, an appropriately defined tangent plane distance [28] needs to be
everywhere non-negative. Like f , however, the tangent plane distance is a functional of ρ(σ),
so a numerical search over all its values is clearly impossible.

If one restricts oneself to finding not full phase splits, but just the spinodal at which a given
parent phase first becomes locally unstable, one still faces a non-trivial task. A local instability
corresponds to a ‘direction’ δρ(σ ) in density distribution space along which the curvature of
the free energy ‘surface’ vanishes (see e.g. [23, 29]), such that∫

dσ
δ2f

δρ(σ ) δρ(σ ′)
δρ(σ ′) = 0 (9)
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where the derivative is evaluated at the parent ρ(0)(σ ). (I will not study here the subtle question
of how, beyond the approximate mean-field-type models discussed below, free energies can
actually be defined in spinodal and unstable regions; see e.g. [30].) The spinodal temperature
T can thus in principle be found as the temperature where, coming from a region of stability,
this equation first has a non-zero solution δρ(σ ).

2.4. Truncatable free energies

As explained above, predicting phase equilibria for a polydisperse system with a completely
generic free energy functional is next to impossible. However, an important insight—later
rediscovered by a number of authors, and summarized in the most general terms probably by
Hendriks [31–33]—came from the seminal work of Gualtieri et al [27]: significant progress
can be made for (model) systems with so-called ‘truncatable’ free energies [23]. These are
characterized by an excess contribution f̃ = f̃ ({ρi}) that depends only on a finite number, K
(say), of generalized moment densities

ρi =
∫

dσ wi(σ )ρ(σ ) (10)

of the density distribution ρ(σ); for power-law weight functions wi(σ ) = σ i , the ρi are
conventional moments. The term ‘truncatable’ emphasizes that the number of moment
densities appearing in the excess free energy of truncatable models is finite, while for a non-
truncatable model the excess free energy depends on all details of ρ(σ), corresponding to
an infinite number of moment densities. The class of polydisperse systems whose (at least
approximate) free energies are truncatable is surprisingly large; a number of examples are given
in section 4 below. I will normally assume that the total particle density ρ0, corresponding to
the weight function w0(σ ) = 1, is included in the set of moment densities.

For a truncatable system, the excess chemical potentials can be written as

µ̃(σ ) = δf̃

δρ(σ )
=
∑
i

wi(σ )µ̃i (11)

where

µ̃i = ∂f̃

∂ρi

(12)

are excess moment chemical potentials. The density distributions (8) in the different phases
can thus be written as

ρ(α)(σ ) = ρ(0)(σ )
exp

[∑
i λ

(α)
i wi(σ )

]
∑

γ v(γ ) exp
[∑

i λ
(γ )

i wi(σ )
] (13)

where the λ
(α)
i must obey

λ
(α)
i = −βµ̃

(α)
i + ci . (14)

The constants ci (common to all P phases, with one for each moment density) occur here since
a common shift of all the λ

(α)
i for any fixed i leaves the density distributions (13) unchanged.

One can fix this indeterminacy by, for example, setting all ci = 0, or fixing all the λ
(α)
i in one

of the phases to be zero. Either way, we have with (14) a set of P × K non-linear equations
for the P × K parameters λ

(α)
i . At fixed values of the v(α), these equations are closed: from

the λ
(α)
i one can find, via (13) and (10), the ρ

(α)
i and hence the µ̃

(α)
i (which, for a truncatable

model, are functions of the moment densities in the respective phase only). The remaining
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P parameters v(α) are found again from
∑

α v(α) = 1 and from the equality of the pressure
(using (5))

� = Tρ0 − f̃ +
∑
i

µ̃iρi (15)

in all phases. So the calculation of a phase split of a given parent into P phases requires,
for a truncatable model, the solution of P(K + 1) non-linear coupled equations for the same
number of variables. Starting from a suitable initial guess, such a solution can, in principle,
be found by a standard algorithm such as the Newton–Raphson one [34]. (Generating an
initial point from which such an algorithm will converge, however, is a non-trivial problem,
especially when more than two phases coexist and/or many moment densities are involved.)
There is also, for truncatable systems, a well-defined way of checking whether a calculated
phase split is thermodynamically stable: rather than over the infinite-dimensional space of
density distributions ρ(σ), the tangent plane distance now needs to be searched only over a
K-dimensional space, which is possible numerically using Monte Carlo methods [23].

If one is interested only in finding the cloud point for a given parent distribution (rather
than phase splits inside the coexistence region), the problem becomes rather simpler. At the
cloud point there is coexistence between the parent ρ(0)(σ ), which still occupies all of the
system volume (v(0) = 1), and P shadow phases ρ(α)(σ ) which are present in vanishingly
small amounts (v(α) = 0 for α = 1, . . . , P ). In the generic situation there is only a single
shadow (P = 1) but higher values of P can occur, e.g. P = 2 at a triple point (where, as
discussed above, a cloud phase coexists with two shadows). Using our freedom to choose
the λi in one phase to fix λ

(0)
i = 0, we then have from (13) that the shadow phase density

distributions are given by

ρ(α)(σ ) = ρ(0)(σ ) exp

[∑
i

λ
(α)
i wi(σ )

]
(16)

and that their λ(α)
i must obey

λ
(α)
i = −βµ̃

(α)
i + βµ̃

(0)
i . (17)

For an ordinary cloud point (P = 1) there is then only one additional equation, the equality
of pressure between cloud (parent) and shadow, and this fixes the cloud point temperature. (For
larger P the pressure equalities give P − 1 additional conditions on the parent distribution
ρ(0)(σ ); for P = 2, for example, this condition determines at what parent density the triple
point occurs.)

Even more drastic simplifications occur, finally, in the spinodal and critical point criteria
for truncatable systems. In particular, it has been shown that the spinodal criterion involves only
the moment densities ρi of the parent phase, as well as its ‘second-order moment densities’
ρij = ∫

dσ wi(σ )wj (σ )ρ(0)(σ ) [23, 29, 32, 33, 35–38]. This simplification is particularly
useful if the moment densities are ordinary moments, i.e. if the weight functions are simple
powers wi(σ ) = σ i (i = 0, . . . , K − 1); then the spinodal criterion only involves the parent
moments up to O(σ 2K−2). The condition for critical points depends additionally on the third-
order moment densities ρijk defined in the obvious way [23,36,39], and generally one can show
that the criterion for an n-critical point will involve up to (2n − 1)th-order moment densities.

3. Methods

3.1. Direct numerical solution

For simple truncatable models involving only K = 1 or 2 moment densities, a direct
numerical solution of the phase equilibrium equations as given above is often possible—
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see e.g. [24, 33, 40–44]; I will review the results of some of these calculations below, in
the context of the various models that have been studied (section 4). Apart from general-
purpose tools for solving non-linear coupled equations (see e.g. [34]), a number of more
specialized numerical techniques have been developed for this purpose. Popular in particular
in the chemical engineering literature is the method of ‘successive substitution’. This is based
on an iteration loop where at each iteration one first holds the excess chemical potentials µ̃(α)(σ )

(or, in a truncatable system, the λ
(α)
i ) fixed and finds the fractional phase volumes from the

conditions of pressure equality; this then determines the density distributions, from which one
can re-calculate the excess chemical potentials and return to the beginning of the loop [45,46].
(Under conditions of constant pressure rather than constant volume as considered here, the
first part of the iteration can be formulated as a minimization problem over the v(α) [47].)
Various accelerations and variants of this method have been proposed [28, 48–50]; a serious
disadvantage is, however, that the iteration can become unstable and fail to converge [51]. For
the task of tracing out cloud and shadow curves (rather than following the phase behaviour of a
given parent phase as external control parameters such as temperature are varied), specialized
techniques have also been developed—see e.g. [52]—with refinements for the numerically
often difficult regions around critical points [53].

3.2. Binning and pseudo-components; method of moments

For an approximate solution of the polydisperse phase equilibrium problem, the most
straightforward method is to ‘bin’ the full density distribution ρ(σ) into a number of discrete
‘pseudo-components’, whose densities are given by the density of particles within the respective
σ -ranges. This then formally reduces the problem to that of a finite mixture. The pseudo-
components can be spaced evenly across the σ -range, or chosen according to other ad hoc
prescriptions. For simple functional forms of the parent distribution ρ(0)(σ ) it has been
suggested, for example, that one could locate the pseudo-components at those σ -values which
would be used in a Gaussian quadrature with ρ(0)(σ ) as the weight function [54–56]. Some
slight improvement in accuracy is also possible by keeping track (to linear order) of variations
in the parent distribution across each bin [57]. Whatever particular implementation is chosen,
however, it is clear that binning introduces uncontrolled systematic errors and also becomes
numerically unwieldy for large numbers of pseudo-components.

A somewhat more systematic approach to allocating pseudo-components is the method
of ‘r-equivalent distributions’ [35, 58]. Here the parent distribution ρ(0)(σ ) is replaced by a
mixture of a finite number of species whose σ -values and densities are chosen to match exactly
the first r moments of ρ(0)(σ ); this approach has also been used in the determination of single-
phase properties such as correlation functions [56]. If one is studying a truncatable model
(with power-law weight functions), then since the conditions for spinodals and critical points
depend on only a finite number of moments of ρ(0)(σ ), these points will be found exactly if
r is chosen large enough. The results for actual phase splits, however, including the onset of
phase coexistence (cloud points and shadows), will be only approximate.

An alternative (but still uncontrolled) approximation is the ‘method of moments’. This
retains the continuous range of σ but fixes a parametric form for the density distributions in all
phases (e.g. Gaussian or Schulz; the Schulz distribution has the form ρ(σ) ∼ σαe−σ/σ0 ). The
free parameters specifying these distributions are then found by solving the phase equilibrium
equations approximately, requiring particle conservation only for certain moments of the parent
density distributionρ(0)(σ ) rather than all its details [54,59–61]. A similar idea was used in [62]
to reduce the problem of finding cloud points and shadows to a set of (approximate) non-linear
equations in a finite number of variables.
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3.3. Perturbative methods for nearly monodisperse systems

For systems which are nearly monodisperse, one can pursue systematic perturbation expansions
around a monodisperse reference system. These can never hope to capture qualitative
polydispersity-induced changes in the phase diagram, such as the appearance of new phases.
However, they can still give some important insights into the effects of ‘weak’ polydispersity,
predicting for example the trends in the fractionation across coexisting phases, or whether
polydispersity tends to narrow or widen coexistence regions in the phase diagram.

The first of such perturbation theories was probably that of Gualtieri et al [27]. They
assumed that the parent density distributions consisted of a dominant monodisperse part
(ρ(0)(σ ) ∼ δ(σ − σ0)), with a small amount of polydisperse material added. The overall
fraction of polydisperse material was used as the expansion parameter and therefore constrained
to be small, but there was no restriction on the width (σ -range) of the polydisperse component.
A number of other authors took a complementary approach, assuming that the overall range
of σ -values in the parent is narrow and expanding perturbatively in this small width, often
assuming a simple functional form for the parent distribution such as a Gaussian [62–64].

More recently, Evans [65–67] has re-examined the perturbative approach and shown, in
particular, that the actual shape of the parent distribution is irrelevant (it can even consist of a
number of closely spaced δ-peaks, corresponding to a discrete mixture of very similar species)
as long as it is sufficiently narrow. In Evans’ approach, it is useful to factor the overall density
out of the density distribution, decomposing it as ρ(σ) = ρ0n(σ) where n(σ) is the normalized
σ -distribution (

∫
dσ n(σ) = 1). If the normalized parent distribution n(0)(σ ) is sufficiently

narrow, with mean σ̄ , then ε = (σ − σ̄ )/σ̄ will be small in all coexisting phases; it is then
convenient to switch from σ to ε as the polydisperse attribute. Evans now assumes that the
excess free energy (density) of an arbitrary phase with density distribution ρ(ε) = ρ0n(ε) can
be expanded systematically as

βf̃ = f̃m(ρ0) + 〈ε〉A(ρ0) + 〈ε2〉B(ρ0) + 〈ε〉2 C(ρ0) + O(ε3) (18)

where 〈ε〉 = ∫
dε εn(ε) and similarly for 〈ε2〉, and f̃m(ρ0) is the excess free energy of a

monodisperse reference system (with ε = 0, i.e. σ = σ̄ for all particles). The coefficients A,
B, and C are unspecified functions of the overall density ρ0. From this very generic form a
number of elegant results follow. For example, for the normalized ε-distribution in a phase α

coexisting with one or more other phases, one finds

n(α)(ε) = n(0)(ε)

[
1 − ε

(
A(α)

ρ
(α)
0

− 1

ρ
(0)
0

∑
β

v(β)A(β)

)]
+ O(ε2) (19)

where the coefficients A(α) ≡ A(ρ
(α)
0 ) can be evaluated at the densities of the coexisting phases

in either the monodisperse reference system or the actual polydisperse system, the difference
contributing only to the neglected O(ε2) terms. Taking the first moment of (19), one has for
the difference of 〈ε〉 in two coexisting phases

〈ε〉(α) − 〈ε〉(β) = −s2

(
A(α)

ρ
(α)
0

− A(β)

ρ
(β)

0

)
(20)

where s, defined through

s2 =
∫

dε ε2n(0)(ε) =
∫

dσ

(
σ − σ̄

σ̄

)2

n(0)(σ ) (21)

is the standard deviation of the parent distribution normalized by its mean, often simply called
the polydispersity. The ‘universal fractionation law’ [65,66,68] of equation (20) states that the
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difference in the mean of the particle sizes (or whatever polydisperse attribute ε measures) in
coexisting phases is directly proportional to the variance of the parent distribution. The result
is valid for arbitrary (narrow) parent distributions, including non-smooth ones. Results for
the polydispersity-induced shifts of phase boundaries relative to the monodisperse reference
system can also be derived, and are again found to be proportional to the variance s2 of the parent
distribution (rather than, as one might have naively expected, to its standard deviation s). In the
region near critical points, the perturbative expansion for the phase boundaries breaks down,
since polydispersity generally shifts the location of the critical point to a different temperature;
at the critical point of the monodisperse reference system, a polydisperse system will thus show
either non-critical phase coexistence (between non-identical phases), or no phase separation
at all. Nevertheless, the approach is useful, particularly if one is interested in questions such
as whether polydispersity will lead to a widening or a narrowing of the coexistence gap in
any given system. It also generalizes straightforwardly to the case of several polydisperse
attributes, where ε becomes a vector-valued variable [67].

3.4. Moment free energy method

As pointed out above, even for truncatable models the numerical solution of the phase
equilibrium conditions can be an extremely difficult numerical problem. Furthermore, the non-
linear phase equilibrium equations permit no simple geometrical interpretation or qualitative
insight akin to the familiar rules for constructing phase diagrams from the free energy surface
of a finite mixture. To address these two disadvantages, one can construct a so-called ‘moment
free energy’ [23, 26, 69]. This takes the above insights for truncatable systems further, by
showing that a simplification similar to that for the phase equilibrium conditions exists also on
the level of the free energy itself.

There are (at least) two approaches to constructing the moment free energy; I describe
here the so-called projection method [69]. The starting point is the decomposition (3) for the
free energy of truncatable systems

f = T

∫
dσ ρ(σ)

[
ln

ρ(σ)

R(σ)
− 1

]
+ f̃ ({ρi}). (22)

In the first (ideal) term of (22), a dimensional factor R(σ) has been included inside the
logarithm; while this has no effect on the exact thermodynamics (see above), it will play
a central role below.

To motivate the construction of the moment free energy, one can argue that the most
important moment densities to treat correctly in the calculation of phase equilibria are those
that actually appear in the excess free energy f̃ ({ρi}). Accordingly one divides the infinite-
dimensional space of density distributions into two complementary subspaces: a ‘moment
subspace’, which contains all the degrees of freedom of ρ(σ) that contribute to the moment
densities ρi , and a ‘transverse subspace’ which contains all remaining degrees of freedom
(those that can be varied without affecting the chosen moment densities ρi). Physically, it is
reasonable to expect that these ‘leftover’ degrees of freedom play a subsidiary role in the phase
equilibria of the system, a view that can be justified a posteriori. Accordingly, one now allows
violations of the lever rule, so long as these occur solely in the transverse space. This means
that the phase splits calculated using this approach obey particle conservation for the moment
densities, but are allowed to violate it in other details of the density distribution ρ(σ). These
‘transverse’ degrees of freedom are instead chosen so as to minimize the free energy: they are
treated as ‘annealed’. Because the excess free energy depends (for a truncatable system) only
on the set of moment densities, one therefore has to minimize the ideal part of the free energy
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over all distributions ρ(σ) with fixed moment densities ρi . This yields

ρ(σ) = R(σ) exp

[∑
i

λiwi(σ )

]
(23)

where the Lagrange multipliers λi are chosen to give the desired moment densities:

ρi =
∫

dσ wi(σ )R(σ) exp

[∑
j

λjwj (σ )

]
. (24)

The corresponding minimum value of f then defines the moment free energy as a function of
the moment densities ρi :

fmom({ρi}) = T

(∑
i

λiρi − ρ0

)
+ f̃ ({ρi}). (25)

Since the Lagrange multipliers are (at least implicitly) functions of the moment densities, the
moment free energy depends only on the set of moment densities. These can now be viewed
as densities of ‘quasi-species’ of particles, allowing for example the calculation of ‘moment
chemical potentials’ [23]

µi = ∂fmom

∂ρi

= T λi +
∂f̃

∂ρi

= T λi + µ̃i (26)

and the corresponding pressure

� =
∑
i

µiρi − fmom = Tρ0 +
∑
i

µ̃iρi − f̃ (27)

(which for truncatable systems is identical to the exact expression (15)). A finite-dimensional
phase diagram can thus be constructed from fmom according to the usual tangency plane rules,
ignoring the underlying polydisperse nature of the system. Obviously, though, the results now
depend on R(σ) which is formally a ‘prior distribution’ for the free energy minimization.
Geometrically, its effect is to tilt the free energy surface before it is ‘projected’ onto the
moment subspace; this point of view is explained in detail in [23]. To understand the influence
of R(σ) physically, one notes that the moment free energy is simply the free energy of phases
in which the density distributions ρ(σ) are of the form (23). The prior R(σ) determines which
distributions lie within this ‘family’, and it is the properties of phases with these distributions
that the moment free energy represents. To ensure that the parent phase is contained in the
family, one chooses its density distribution as the prior, R(σ) = ρ(0)(σ ); the moment free
energy procedure will then be exactly valid whenever the density distributions actually arising
in the various coexisting phases of the system under study are members of the corresponding
family

ρ(σ) = ρ(0)(σ ) exp

[∑
i

λiwi(σ )

]
. (28)

This condition holds whenever all but one of a set of coexisting phases are of infinitesimal
volume compared to the majority phase, as can be seen explicitly from (16). Accordingly, the
moment free energy yields exact cloud point and shadow curves. (And the exact conditions (14)
are seen, with the help of (26), to express precisely the requirement of equal moment chemical
potentials in all phases.) Similarly, one can show that spinodals and critical points of any
order are found exactly [23]. For coexistences involving finite amounts of different phases
the moment free energy only gives approximate results, since different density distributions
from the family (28), corresponding to two (or more) phases arising from the same parent
ρ(0)(σ ), do not in general add to recover the parent distribution itself. Moreover, according to
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Gibbs’ phase rule, a moment free energy depending on K moment densities will not normally
predict more than K + 1 coexisting phases, whereas we know that a polydisperse system can
in principle separate into an arbitrary number of phases. Both of these shortcomings can be
overcome by including extra moment densities within the moment free energy; this does not
affect any of the exactness statements above but systematically increases the accuracy of any
calculated phase splits [23]. This idea can be further refined by choosing the weight functions
of the extra moments adaptively, which allows the properties of the coexisting phases to be
predicted with in principle arbitrary accuracy [70].

The moment free energy method (or moment method for short) thus restores to the problem
of polydisperse phase equilibria much of the physical and geometrical insight available from
the thermodynamics of finite mixtures. It also leads to computationally efficient procedures;
in particular, its numerical implementation can handle coexistence of more than two phases
with relative ease compared to previous approaches [28,32,47,49,52,54,55,58,59,62,71,72].

4. Applications to (model) systems

4.1. Polymers I: Flory–Huggins theory for homopolymers

Flory–Huggins theory [73] is a simple but remarkably successful approximate theory
describing the thermodynamics of polymer solutions and blends. It was derived in the
1940s [6–8] and extended very early on to include polydispersity in the lengths of the polymer
chains. For clarity I will use L here rather than σ for the polydisperse attribute, so ρ(L) dL
will be the number density of polymers with lengths in the range [L,L+ dL]. The excess free
energy of polydisperse Flory–Huggins theory for homopolymers (which contain only one type
of monomer) is then

f̃ = (1 − ρ1) ln(1 − ρ1) + χρ1(1 − ρ1) (29)

where w1(L) = L and I have set kBT = 1. I have also chosen the volume of a solvent molecule
as the unit volume, and assumed for simplicity that this is equal to the volume of a monomer
(or polymer ‘segment’); ρ1 is then simply the volume fraction of polymer. The first term in
f̃ is minus the entropy of the solvent and always leads to an increase in free energy when
phase separation occurs. The second term, on the other hand, reflects the interactions of the
monomers with each other and with the solvent, with χ measuring the effective monomer–
monomer attraction in units of kBT . When (as T is lowered) χ becomes sufficiently large,
this attraction causes a phase separation into a polymer-rich and a polymer-poor phase; in the
monodisperse case, this is the only phase separation that occurs. Tompa [74, 75], however,
realized that already bidisperse polymer solutions can exhibit three-phase coexistence as soon
as the ratio of the two different chain lengths is larger than around ten; this then produces a kink
in the cloud curve and a jump in the shadow curve as discussed in section 2. Solc [13] realized
that, in fact, rather intricate phase diagram topologies can occur: as sketched in figure 5, the
occurrence of the three-phase coexistence can end up ‘removing’ the critical point from the
cloud curve, by shifting it onto a metastable or unstable branch of the cloud curve where it is
no longer accessible.

Of course, three-phase coexistence will be observed not only for the parent density at
which the cloud curve has its kink (i.e., directly at the triple point), but also for a range of
temperatures and densities around this point. Not unexpectedly, the maximum temperature
interval over which three-phase coexistence can be observed (for an appropriately chosen
composition of the system) becomes wider as the lengths of the two polymer species becomes
more disparate; conversely, it can shrink to zero as they become comparable. Where this
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Figure 5. Qualitative cloud and shadow curves for homopolymers with chain length polydispersity.
Only the region around the critical point (which is marked by a rectangle) is shown; cloud curves
are solid and shadow curves dashed. As is conventional, the polymer volume fraction (rather than
number density) is used on the x-axis to specify the overall dilution of the system; on the y-axis,
since χ is measured in units of kBT , 1/χ is essentially a dimensionless temperature. Left: the
conventional phase diagram topology, which is found for monodisperse or weakly polydisperse
systems. Middle: as the length polydispersity increases, a triple point can occur where the shadow
curve has a jump discontinuity. Right: for even more pronounced polydispersity, the triple point
may prevent the crossing of cloud and shadow curves, thus making the critical point inaccessible.

happens, one gets a tricritical point, as was first realized by Solc et al [76] and later confirmed
experimentally [53,77–80]. For mixtures of more than two polymer species with appropriately
tuned length distributions, higher-order critical points can also occur [81]. Finally, more
complicated phase separation sequences including even re-entrant features are possible; for a
specific solution of a mixture of three different polymer species, for example, a sequence of
one → three → two → three phases was observed on lowering the temperature [82].

All the results above were for mixtures of a small number of distinct polymer species
whose chain lengths were assumed to be sharply defined. For truly polydisperse systems,
the first numerical calculations of phase equilibria were probably those of Koningsveld and
Staverman [10–12,21], with an emphasis on using fractionation effects to generate phases with
a narrow distribution of chain lengths. Solc [13,83] realized later that three-phase coexistence
is quite generic in distributions of chain lengths which have ‘fat tails’ (which means, in this
context, that they decay more slowly than exponentially with L for large lengths). In such
systems he predicted the critical point to be always ‘hidden’, corresponding to the most extreme
polydisperse case sketched in figure 5, and this was later confirmed experimentally [84].

In fact, ‘fat-tailed’ parent distributions give rise to quite subtle behaviour, in particular
for the cloud and shadow curves. To explain how this arises, I will paraphrase Solc’s
arguments [13, 83] here. Flory–Huggins theory for homopolymers gives, as can be seen
from (29), a truncatable free energy with a single moment density ρ1, with excess moment
chemical potential

µ̃1 = −1 − ln(1 − ρ1) + χ(1 − 2ρ1) (30)

and osmotic pressure

� = ρ0 + ρ1µ̃1 − f̃ = ρ0 − ρ1 − ln(1 − ρ1) − χρ2
1 . (31)

The solvent entropy leads to a positive contribution −ρ1 − ln(1 − ρ1) to �, acting against
increases in polymer volume fraction ρ1, while the monomer–monomer attraction gives the
negative term −χρ2

1 favouring large values (but <1) of ρ1.
Consider now the shadow phase coexisting with the parent at the cloud point. From (17),

its density distribution has the form ρ(1)(L) = ρ(0)(L) exp(λ(1)
1 L). If we drop the superscript
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on the shadow phase properties and use the abbreviation λ ≡ λ
(1)
1 this is written simply as

ρ(L) = ρ(0)(L) exp(λL) (32)

and the condition on λ—sometimes called the ‘separation parameter’ in the polymer
literature—is, from (17),

λi = βµ̃
(0)
1 − βµ̃1. (33)

The value of χ at the cloud point, finally, can be found from the pressure equality � = �(0).
Equation (32) shows clearly why a slower-than-exponential decay of the parent distribution

for large L will lead to unusual effects: a positive value of λ causes all moments of the shadow
phase distribution ρ(σ) to diverge. In fact, to get well-defined results one needs to impose—as
is physically reasonable—a cut-off on the parent distribution at some large length Lmax, and
then consider the limit1 of large Lmax. Cloud–shadow pairs with negative λ—corresponding to
a dense cloud phase and a more dilute shadow—will be only very weakly affected by the value
of Lmax, since no diverging integrals occur even for Lmax → ∞. For positive λ, on the other
hand, one needs to consider carefully the dependence of λ on Lmax. A first possibility is that
λ has a non-zero limit for Lmax → ∞. But then the integral for the shadow’s polymer volume
fraction ρ1 = ∫

dLLρ(0)(L) exp(λL) will diverge unless the parent (cloud phase) density ρ
(0)
0

converges to zero such as to give a limiting ρ1 < 1. The polymer density ρ0 of the shadow
will then also converge to zero, since the shadow phase is dominated by the longest polymer
chains and thus ρ0 ∼ ρ1/Lmax → 0. From (31), the osmotic pressure of the shadow phase is
then

� = −ρ1 − ln(1 − ρ1) − χρ2
1 . (34)

The parent, on the other hand, has �(0) = 0 because of its vanishing polymer density ρ
(0)
0 (and

hence polymer volume fraction ρ
(0)
1 ). The pressure equality thus gives � = 0, or

χ = −ρ1 − ln(1 − ρ1)

ρ2
1

. (35)

Remarkably, this result for the shadow curve (expressed as χ versus shadow polymer volume
fraction ρ1) is universal, i.e. independent of any features of the parent ρ(0)(L) except the
presence of a fat tail [83]. The resulting phase coexistence is rather peculiar: at vanishingly
small polymer density (and volume fraction), the parent splits off a shadow with a finite polymer
volume fraction, and made up of only the very longest chains in the parent. Both phases have
vanishingly small pressure; in the shadow, this is achieved by an exact balance between the
positive (repulsive) and negative (attractive) contributions to �.

The reasoning so far gives the onset of phase coexistence which occur as the parent density
ρ

(0)
0 is increased at fixed (sufficiently large) χ . If one wants to find instead the cloud point at

fixed non-zero ρ
(0)
0 , caused by an increase in χ , Solc [13, 83] showed that one has to assume

that λ → 0 as Lmax → ∞. This means that the cloud and shadow are ‘almost critical’: for
small chain lengths L (of order the parent average), their density distributions are essentially
identical; the shadow only differs from the parent in that it contains a larger fraction of the
longest chains (L ≈ Lmax). As a consequence, when represented in aχ versusρ1 plot, the cloud
and shadow curves actually coincide in the limit Lmax → ∞; their functional form is again
universal and given by 2χ = 1/(1−ρ

(0)
1 ) = 1/(1−ρ1). However, due to the contribution from

the longest chains, all moments ρn = ∫
dLLnρ(L) of the shadow with n > 2 actually diverge

with Lmax; cloud and shadow curves plotted as χ versus ρ2, for example, would therefore

1 The strict limit Lmax → ∞ is of course unrealizable physically, but useful as a mathematical device for highlighting
the effects of large Lmax.
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Figure 6. A sketch of cloud and shadow curves for a homopolymer with a fat-tailed length
distribution. In the limit where the cut-off Lmax on chain lengths becomes very large, the low-
density part of the cloud curve becomes vertical, while for polymer volume fractions above zero but
below the triple point the cloud and shadow curves approach each other and eventually coincide.

be extremely different (by an infinite amount in the limit). A sketch summarizing the overall
shape of the cloud and shadow curves for polymers with fat-tailed length distributions is shown
in figure 6.

The above considerations are not as academic as they may seem; log-normal length
distributions, for example, have fat tails as defined above and occur frequently in polymer
processing. For branched polymers, length distributions with (even fatter) power-law tails
arise naturally, and lead to similar phenomena [44].

Flory–Huggins theory is by its nature a mean-field theory; as described above, it is
nevertheless rather successful at capturing the effects of length polydispersity on polymer phase
behaviour. Close to critical points, deviations will occur; even there, however, polydispersity
has been shown to have non-trivial effects. For example, while monodisperse polymers display
critical behaviour of the Ising universality class, the critical exponents are modified non-trivially
by polydispersity, due to the presence of the large number of conserved densities which act as
‘hidden variables’ [85].

4.2. Polymers II: Random copolymers

Flory–Huggins theory can also be applied to copolymers, which are made up of random
sequences of two types (A and B, say) of monomer. Define σ as the difference between the
fractions of A-type and B-type monomer on a chain, such that σ ∈ [−1, 1]. One can then have
polydispersity in the polymer chain lengths, L, as well as in the chemical chain compositions,
σ , and so the system is described by a density distribution ρ(L, σ ). In the same units as for
the homopolymer case, Flory–Huggins theory then gives for the excess free energy

f̃ = 1

Ls
(1 − ρ1) ln(1 − ρ1) − χρ2

1 − χ ′ρ2
2 − χ ′′ρ1ρ2. (36)

Two moment densities enter, defined by the weight functions w1(L, σ ) = L and w2(L, σ ) =
Lσ . I have also included the generalization to a polymeric solvent here, with chain length
Ls. As before, χ measures the effective monomer–monomer attraction, but two additional
parameters now appear: χ ′ favours A–B demixing, and χ ′′ accounts for any asymmetry in
the interactions between solvent and monomers A and B, respectively. In the homopolymer
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case, where A and B are identical, one has χ ′ = χ ′′ = 0 and then retrieves the expression (29)
as expected (up to the term χρ1, which is linear in density and so irrelevant for the phase
behaviour).

The case of polydisperseL and σ is rather complex, so it is easiest to extract the copolymer-
specific effects first by assuming that only the chemical composition σ is polydisperse while
the chain length L is monodisperse. One can then make the replacement ρ(L, σ ) → ρ(σ),
and the moment densities ρ0 and ρ1 become trivially related according to ρ1 = Lρ0; similarly,
ρ2 becomes L times the first moment (w.r.t. σ ) of ρ(σ).

To simplify even further, one can assume that there is no solvent in the system, constraining
the polymer volume fraction to ρ1 = Lρ0 = 1. The normalized σ -distribution is then
n(σ) = Lρ(σ), ρ2 reduces to the average of σ , and the excess free energy becomes
f̃ = −χ ′ρ2

2 = −χ ′[
∫

dσ σn(σ)]2 up to constants and irrelevant linear terms. By adding
back some linear terms (and exploiting the fact that

∫
dσ n(σ) = 1), one can also write this

excess free energy as

f̃ = 1
2χ

′
∫

dσ dσ ′ (σ − σ ′)2n(σ)n(σ ′) (37)

which shows quite transparently the mechanism of phase separation in this system: phases that
contain a spread of different σ can always lower their excess free energy by fractionation; as
temperature is lowered, this effect dominates the corresponding loss of entropy of mixing in
the ideal part of the free energy, and one expects separation into an ever-increasing number of
phases2. This remarkable behaviour has indeed been found in numerical calculations [40–42];
an example is shown in figure 7(top). Equally remarkably, one can show that in even such a
very simple model system, critical points of arbitrary order can occur (though the required fine-
tuning of the parent density distribution would probably make the experimental observation
of critical points of higher order than tricritical very difficult) [23].

For the case where solvent is present in the system, but the chain lengths L are still
monodisperse, phase coexistences have been calculated in [23]. To simplify matters, the
solvent was assumed to be polymeric and to have the same chain length as the copolymer
(Ls = L). The interaction parameters χ and χ ′′ were also taken to be zero, with only χ ′ being
non-zero; under these assumptions, the solvent acts exactly like a random copolymer chain with
σ = 0, i.e. composed of equal numbers of A and B monomers. Even for this simple scenario,
all symmetric (under σ → −σ ) parent density distributions ρ(0)(σ ) show a tricritical point at
some value of the overall polymer density (see figure 7 (bottom)). This effect generalizes that
found in a simpler bidisperse case, where the ‘copolymer mixture’ only contains the pure A
and pure B homopolymers [86,87]. The fully polydisperse case is nevertheless richer since it
also allows critical points of higher order than tricritical.

Finally, the most general case of joint polydispersity in lengths L and chemical
compositions σ has been treated by a number of authors (see e.g. [24] for an extensive review).
In early work an incorrect form for the excess free energy was used [88,89]; the correct form is
the one given above in equation (36) [42, 90]. While the calculation of phase splits inside the
coexistence region remains an open problem, the simpler cloud and shadow curves have been
obtained for a number of scenarios. One interesting feature is that even for Schulz distributions
of chain lengths, triple points and the associated kinks in the cloud curve are predicted (and
observed experimentally [89]). These are clearly due to the chemical polydispersity since
homopolymers with Schulz distributions of chain length never exhibit triple points [13, 83].

2 This phase separation occurs at values of χ ′ of order 1/L, rather than of order unity; the reason for this is that the
ideal part of the free energy is

∫
dσ ρ(σ)[ln ρ(σ) − 1] = L−1

∫
dσ n(σ) ln n(σ) (+ linear terms).
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Figure 7. Top: an example of a demixing cascade in a random copolymer blend (i.e. without
solvent), as calculated from Flory–Huggins theory [23]. Shown are, for a single parent phase,
the values of ρ2 = 〈σ 〉 in the coexisting phases as χ ′ is increased, corresponding to temperature
being decreased. Note how more and more coexisting phases appear, producing new branches
of the coexistence curve (connected by horizontal lines to guide the eye). The different curves
are calculated using the moment free energy method, and labelled by the number K of moments
retained in the description. While the results for the cloud point and shadow are exact even with
the smallest K (K = 1), the predictions in the coexistence region approach those of an exact
calculation as K is increased, and are indistinguishable for K = 10. Bottom: with solvent added
to the system, parents with appropriately chosen polymer volume fraction exhibit tricritical points,
where separation into three infinitesimally different phases occurs [23]. (Only the—essentially
exact—results for the largest value of K are shown.)

4.3. Spherical colloids I: Van der Waals theory

Van der Waals theory [17, 63, 91, 92] is the simplest model for the liquid–gas transition, and
as such is appropriate for investigating coexistence between gas- and liquid-like phases of
colloidal suspensions (in which the structural arrangement of the colloidal particles—for now
assumed to be spherical—is analogous to that of the atoms in ordinary gases and liquids). For
monodisperse particles, the excess free energy of van der Waals theory is

f̃ = −Tρ0 ln(1 − bρ0) − 1
2aρ

2
0 .

Here the first term represents excluded-volume interactions, i.e. the strong short-range
repulsions between colloid particles at and near contact, with the parameter b of the order
of the volume of a single particle. The second term, on the other hand, arises from longer-
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ranged attractive forces between particles and is of the order of the typical attraction energy
times an interaction volume (the latter being again of the order of the particle volume).

In the polydisperse case, bρ0 is generalized to
∫

dσ b(σ )ρ(σ ) and aρ2
0 to∫

dσ dσ ′ a(σ, σ ′)ρ(σ )ρ(σ ′); the polydisperse attribute σ may represent, for example, the
diameter or charge of the colloid particles. The functions a(σ, σ ′) and b(σ ) can be written in
a more physically transparent way as

a(σ, σ ′) = ε(σ, σ ′)d3(σ, σ ′) b(σ ) = d3(σ, σ )

where ε(σ, σ ′) is the energy scale of attractions between particles with diameter (or charge
etc) σ and σ ′, and d(σ, σ ′) is the corresponding interaction length scale. These functions each
depend on two arguments, but can be reduced to functions of a single argument if one assumes
the so-called mixing rules

ε(σ, σ ′) = ε1/2(σ, σ )ε1/2(σ ′, σ ′) d(σ, σ ′) = 1
2 [d(σ, σ ) + d(σ ′, σ ′)]. (38)

Abbreviating ε(σ, σ ) to ε(σ ) and similarly for d(σ, σ ), the excess free energy of polydisperse
van der Waals theory is then written as

f̃ = −ρ0 ln

(
1 −

∫
dσ d3(σ )ρ(σ )

)

−1

2

∫
dσ dσ ′ ε1/2(σ )ε1/2(σ ′)

(
d(σ ) + d(σ ′)

2

)2

ρ(σ)ρ(σ ′) (39)

and is seen to have a truncatable structure, depending—for the most general choice of ε(σ )

and d(σ )—on six moment densities. These have weight functions 1, d3(σ ), and ε1/2(σ )dn(σ )

(n = 0, . . . , 3).
Dickinson [17] appears to have been the first to analyse the above model. He used

binning into pseudo-components to obtain numerically some results for the ratio of the density
distributions in coexisting gas and liquid phases, which indicate the strength of fractionation
effects. He also suggested that polydispersity might induce the qualitatively new feature of
liquid–liquid demixing, but supposed that deviations from the simple mixing rules (38) are
required for this to occur.

Gualtieri et al [27] also studied the van der Waals model for simple choices of
the σ -dependences, using e.g. a b(σ ) that was constant or linear in σ , together with
a(σ, σ ′) = constant or a(σ, σ ′) ∝ σσ ′. As explained in section 3.3, they used a perturbation
theory approach to study the effects of the addition of a small amount of polydisperse material
to an otherwise monodisperse system, obtaining the density distributions in coexisting phases
and the polydispersity-induced shift in the critical point. For a Schulz parent distribution
(ρ(0)(σ ) ∼ σαe−σ/σ0 ) they also found the full cloud and shadow curves.

Kincaid et al [63] also expanded perturbatively, but using the width s of the parent
distribution as the small parameter and focusing mainly on the shift in the critical point.

Recently the van der Waals model has been revisited, for parent distributions of Schulz
or log-normal form and with various simple choices for the functions d(σ ) and ε(σ ) [91].
Cloud and shadow curves were found numerically and showed small but observable changes
compared to the monodisperse case for polydispersities s of the order of 10%. For s ≈ 30% and
above, new critical points appear, although their thermodynamic stability was not investigated.
Further work along these lines [92] also showed that for sufficiently wide (log-normal) parent
distributions three-phase coexistence can occur, even for the simple mixing rules (38) above.
In fact one can say rather more: if, as in [92], one assumes d(σ ) = constant—so that the
only effect of polydispersity is on the attraction energy parameters ε(σ )—then in the dense
limit the model formally maps to the Flory–Huggins theory of a random copolymer blend [93]
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discussed in section 4.2. It can therefore show liquid–liquid demixing into an arbitrarily large
number of phases as temperature is lowered, and can also exhibit critical points of arbitrarily
high order.

4.4. Spherical colloids II: Hard spheres

Van der Waals theory does not address the question of crystallization in colloidal suspensions,
where the particles arrange themselves into a lattice structure with long-range translational
order. The ‘cleanest’ system in which to study this transition is one where the colloidal
particles act as hard spheres, exhibiting no interaction except for an infinite repulsion on
overlap. This scenario can indeed be realized experimentally, using for example latex particles
that are sterically stabilized by a polymer coating [94]. In a hard-sphere system the only energy
scale is set by the temperature; T therefore only appears as a trivial scaling factor in the results
and will be set to unity in this section. There is also no gas–liquid transition, so it is common
to refer to the non-crystalline phase of hard spheres as a fluid (rather than a gas or a liquid).
Monodisperse hard spheres exhibit only a freezing transition, where a fluid with a volume
fraction φ of spheres of φ ≈ 50% coexists with a crystalline solid with φ ≈ 55%. Phase
separation is observed when the overall volume fraction of the system lies between the values
for the coexisting fluid and crystal; for φ < 50%, on the other hand, one has only the fluid and
for φ > 55% (and up to the maximum close-packed value of φ ≈ 74%) only the solid.

For colloidal hard spheres, there is inevitably some polydispersity in the diameter σ of
the spheres. It was realized early on that such diameter polydispersity might destabilize the
colloidal crystal phase, eventually inhibiting freezing above a certain ‘terminal’ polydispersity.
Experimentally, the freezing transition is indeed suppressed in sufficiently polydisperse
systems [94, 95]. But the situation is somewhat ambiguous, since the observed terminal
polydispersity might also be a non-equilibrium effect due to a kinetic glass transition [96];
the growth kinetics of polydisperse crystals may also cause deviations from equilibrium
behaviour [97]. The determination of an accurate equilibrium phase diagram for polydisperse
hard spheres is nevertheless an important task, if only to allow experimental findings to be
properly attributed to equilibrium or non-equilibrium effects. The results could also guide
future experiments on colloidal suspensions under microgravity conditions, where—with the
glass transition shifted to higher densities or even absent [98]—more of the equilibrium
behaviour should be observable. In the remainder of this section, and in keeping with the
overall focus of the paper, I will therefore focus on attempts to clarify the equilibrium phase
behaviour of polydisperse hard spheres.

Much early theoretical work (see [99] for a comprehensive list of references) focused on
estimating the terminal value st of the polydispersity s. As above, s is defined as the normalized
standard deviation of the diameter distribution; see equation (21). Dickinson and Parker [100],
for example, extrapolated the decrease of the volume change on melting with polydispersity s to
zero, obtaining an estimate of st ≈ 30%. Pusey [101] used a simple Lindemann-type criterion
to estimate that the larger spheres in a polydisperse system would disrupt the crystal structure
above st ≈ 6 . . . 12%. McRae and Haymet [102] used density functional theory (DFT—see
section 5.1) together with the simplifying assumption that there is no fractionation, i.e. that fluid
and crystal have the same distribution of diameters, and found that there was no crystallization
above st ≈ 5%. Barrat and Hansen [103] also employed DFT, estimating the free energy
difference between fluid and solid; while in the monodisperse case the solid has the lower free
energy above volume fraction φ = 55%, the fluid can become preferred again at large φ if the
polydispersity s is sufficiently large. This result is compatible with the intuition that polydis-
persity reduces the maximum packing fraction in a crystal (since a range of diameters need to
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be accommodated on uniformly spaced lattice sites), while it increases the maximum packing
fraction in the fluid, where smaller spheres should be able to fill ‘holes’ between larger particles
more easily. A more detailed calculation [99] confirmed this, estimating the terminal polydis-
persity from the crossing of the maximum packing fractions of liquid and solid as st = 12%.

In recent years, computer simulations have also been used to estimate the terminal
polydispersity. It is difficult, however, to carry out such simulations for the experimentally
most relevant situation of a fixed parental density distribution ρ(0)(σ ): with a number of
particles that can be simulated of the order of hundreds, there will be strong finite-size effects
due to the random assignment of diameters to particles; furthermore, with only a few particles
in each small range of diameters, it is almost impossible to ensure that the size distributions
in coexisting phases are properly equilibrated. Instead, a semi-grandcanonical approach has
been used, which prescribes the differences in chemical potential µ(σ) between different σ ;
effectively, one then simulates a system with variable polydispersity. Bolhuis and Kofke, for
example, imposed a parabolic shape for the chemical potential differences, giving a Gaussian
distribution of diameters at low density [104]. Using thermodynamic integration they then
followed the pressure at which fluid–solid coexistence occurs as a function of the width
of this Gaussian distribution. They found that this coexistence line terminates, at a point
where the densest packings for fluid and solid were reached; the diameter distributions there
were significantly different, with the fluid having a polydispersity of s ≈ 12% and the solid
s ≈ 6%. However, this terminal point is of limited relevance, since it only exists for the given
chemical potential differences. One can in fact go beyond it by considering more general
functional forms for the chemical potential differences [105]; nevertheless, Kofke and Bolhuis
observed that the coexisting solid always seemed to have a polydispersity below s ≈ 6%,
while for the fluid much larger values of s could be reached. (An unpublished preprint by
Almarza and Enciso [106] comes to similar conclusions.) Based on this observation, it was
suggested [105] that a polydisperse hard-sphere fluid may freeze by splitting off a series of
solids each comprising a narrow range of (large) sphere diameters3.

While the simulation results described above are suggestive, they are still obtained
for variable polydispersity, i.e. by fixing chemical potential differences. In contrast to the
experimental situation, the overall particle size distribution can thus change (sometimes
dramatically) across the phase diagram, limiting the applicability of the results4. A number of
researchers have therefore tried to investigate the phase behaviour of polydisperse hard spheres
theoretically, using approximate expressions for the (excess) free energy. For the fluid phase,
the most accurate such approximation available is currently believed to be the generalization by
Salacuse and Stell [20] of the BMCSL equation of state [109,110]; for the monodisperse case
this reproduces the well-known Carnahan–Starling equation of state. Assuming that sphere
diameters are measured in units of some reference value σ0, and that all densities are made
non-dimensional by multiplying by the volume πσ 3

0 /6 of a reference sphere, the BMCSL
expression for the excess free energy is

f̃ =
(
ρ3

2

ρ2
3

− ρ0

)
ln(1 − ρ3) +

3ρ1ρ2

1 − ρ3
+

ρ3
2

ρ3(1 − ρ3)2
. (40)

This has again a truncatable form, involving only the (ordinary) moments ρi = ∫
dσ σ iρ(σ )

(i = 0, . . . , 3) of the density distribution; with our choice of units, ρ3 ≡ φ is the volume
fraction of spheres. Bartlett [111] provided an elegant argument for why—at least within a

3 In a more extreme scenario, where the diameter distribution has a fat (slower than exponential) tail extending to
very large values, Sear [107] argued that such a fractionated solid would in fact occur already at vanishingly small
densities.
4 A simulation technique for addressing this problem is currently being developed [108].
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virial expansion—such a moment structure of the excess free energy for the hard-sphere fluid
should in fact be exact5.

For phase coexistence calculations it is desirable also to have a compact expression for the
excess free energy of the polydisperse hard-sphere crystal. This is not at all a trivial question,
in particular since the structure of such a crystal could be rather complex, with different sites
inside the crystalline unit cell occupied preferentially by particles with different ranges of
diameters. Most theoretical work therefore assumes that one instead has a substitutional solid,
where crystal sites are occupied equally likely by particles of any diameter. A simple-minded
but popular approach to estimating the free energy is then cell theory, where particles are treated
as independent but confined in an effective cell formed by their neighbours (see e.g. [116]).
A more quantitative, ‘geometric’ approach has recently been proposed by Bartlett [111, 117]:
he assumed that the excess free energy of the solid depends on the same moment densities ρ0,
. . . , ρ3 as that of the fluid, and then fitted the functional form of this dependence by comparing
with simulation data on bidisperse hard-sphere systems.

By applying the moment free energy method to the BMCSL free energy for the fluid and
Bartlett’s ‘geometric’ free energy for the solid, Bartlett and Warren [118] recently investigated
the freezing behaviour of polydisperse hard spheres. They found that the range of volume
fractions where fluid–solid coexistence is observed narrows as the polydispersity s is increased
and eventually shrinks to zero at a terminal polydispersity st ≈ 8%. (At this point, the density
distributions in the fluid and solid were calculated to be equal, but as the symmetries of the two
phases are different this is not a critical point but rather a ‘point of equal concentration’ [118].)
At values of s just below st , they also found a transition to a re-entrant fluid at large volume
fractions (see figure 8 (left)). Such a re-entrance is in fact to be expected from the earlier work
on the terminal polydispersity described above: for sufficiently polydisperse systems, the fluid
should at large volume fractions be thermodynamically preferred over the solid because it
packs the spheres more efficiently. When interpreting the results of [118], however, it needs
to be borne in mind that the approximations made in effect constrained the polydispersity
(normalized standard deviation) s to be equal in the coexisting fluids and solids, allowing only
the mean sizes to be different. The possibility of a very polydisperse fluid splitting off a solid
containing a narrow range of diameters is thus disallowed. Work is in progress to remove
these simplifications [93], and one may speculate that the point of equal concentration would
disappear in a more accurate treatment (see figure 8(right)).

The analysis of the freezing behaviour of strongly polydisperse hard spheres is complic-
ated by the fact that, instead of a single solid phase, a number of coexisting solids with
strong diameter fractionation between them may appear. Bartlett [119] and Sear [116] both
investigated this possibility, using different approximations for the free energy for the solid,
and found that an increasing number of fractionated solids should appear as the system is made
more polydisperse. Both calculations only compared the free energies of the liquid and the
fractionated solids, however, rather than solving the full phase equilibrium conditions. They
also used the drastic assumption that the different solids would split the range of diameters
evenly between themselves, so that spheres of any given diameter would occur in only a single
phase; in reality, one would expect a rather more gradual fractionation of the phases.

One final complication in the phase behaviour of strongly polydisperse hard-sphere fluids
is the possibility of fluid–fluid demixing. While for bidisperse hard spheres such a demixing
transition is believed to be absent (or at least always metastable compared to the freezing
transition), Warren [38] found, using the BMCSL free energy, that for a bimodal diameter

5 Within the so-called ‘mean-spherical approximation’, truncatable free energies have recently also been found for
adhesive or ‘sticky’ hard spheres [112–115]; these are models of spherical colloids which, in addition to a hard
repulsion on contact, interact via strong short-range attractive forces.
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Figure 8. Left: a sketch of Bartlett and Warren’s phase diagram for polydisperse hard spheres [118].
Shown is the result of their simplest approximation, in which fractionation is not allowed; cloud
and shadow curves then effectively reduce to the conventional coexistence curves for monodisperse
systems, and coexisting phases (connected by dotted lines) share the same value of the polydispersity
s. (A better approximation used in [118] allowed fractionation but still effectively constrained s

to be equal in coexisting phases.) Note the re-entrant transition to a fluid at large colloid volume
fraction φ, for polydispersities s just below the terminal value st ≈ 8%. At st , the phase boundaries
meet in a ‘point of equal concentration’. Right: the possible shape of the ‘true’ phase diagram
that would result from a calculation which allows for different polydispersities of fluid and solid.
Shown are a cloud curve from the fluid side, and the corresponding curve of solid shadow phases;
coexisting phases are again connected by dotted lines. There is now no reason that cloud and
shadow curves should meet, so a point of equal concentration seems unlikely. There may also not
be a terminal value of the polydispersity on the fluid cloud curve, since even a very polydisperse
fluid may always be able to split off a solid with a narrow distribution of particle diameters. At
large values of s, fluid–fluid demixing (not shown) might pre-empt the fluid–solid transition.

distribution a demixing instability could occur at reasonable volume fractions. Warren noticed
that significant polydispersity (s � 50%) in the larger spheres was necessary to produce
this effect. He conjectured that the demixing occurred because the smaller spheres cause an
effective attraction (depletion interaction; see section 4.5 below) between the larger spheres;
polydispersity then facilitates the demixing by making a dense phase of larger spheres more
favourable (due to the increased maximal packing fraction). Cuesta [29] studied log-normal
diameter distributions; even though these only have a single maximum, and thus no separation
into small and large spheres akin to the bimodal case, he still predicted fluid–fluid demixing
for large polydispersities (s � 160%).

The theoretical studies reviewed above still leave open a substantial number of questions.
For fluid–fluid demixing, for example, only the spinodal instability was analysed [29,38]. The
actual demixing transition will occur at a lower density yet to be determined; and no predictions
exist for the freezing behaviour of such demixed fluids at higher densities. The drastic—and
differing—approximations for size fractionation that were used in the studies of re-entrant
melting and solid–solid coexistence [116,118,119] also leave the relative importance of these
two phenomena unclear. Work is now under way to address these questions and produce a
coherent picture of the equilibrium phase behaviour of polydisperse hard spheres [93].

4.5. Colloid–polymer mixtures

Moving beyond suspensions of (hard-) spherical colloids alone, colloid–polymer mixtures
have in recent years attracted considerable interest, mainly because the polymer induces an
easily tunable ‘depletion interaction’ between the colloids. This interaction arises as follows.
When colloidal particles approach each other to within twice the radius of gyration (i.e. the
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effective diameter) of the polymer chains, they form a ‘depletion zone’ between them which the
polymer chains cannot enter. The result is an imbalance in the polymer osmotic pressure which
pushes the colloidal particles together, causing an effective colloid–colloid attraction. This
attraction can lead to the appearance of a (colloidal) gas–liquid coexistence region in the phase
diagram [120]; its range and strength are tunable via the size of the polymer chains and the
polymer concentration, respectively. This feature makes colloid–polymer mixtures interesting
model systems with which to study the conditions required for the appearance of liquid phases;
theory, simulation, and experiment all reveal, for example, that the interaction range needs to
exceed a certain fraction of the particle size (of order 30%) in order for gas–liquid coexistence
to be stable rather than metastable [120–122].

To model the simplest case of colloids with hard interactions and ideal polymers (in
a so-called θ -solvent), the Asakura–Oosawa model [123] has been widely used. It treats
the polymer coils as spherical particles that can interpenetrate freely with each other, but
experience a hard-sphere repulsion when they come into contact with the colloids. Formally
integrating out the polymer degrees of freedom then results in the expected attractive colloid–
colloid interaction. However, this interaction generally contains many-body terms (arising
from the overlap of the depletion zones of more than two colloids) [122] and so its effect is
difficult to take into account exactly. But progress can be made using a van der Waals (mean-
field) type of approach which replaces the effective colloid–colloid interaction by its average
over the pure (hard-sphere) colloid system [121]. In the case of monodisperse colloid, the
resulting phase behaviour is well understood, with the main feature being the appearance of
gas–liquid phase separation; non-ideality of the polymer chains can also be included in the
model but only introduces a weak temperature dependence into the phase behaviour [124].
Polydispersity in polymer chain lengths has been studied [125, 126], but only for variable
polydispersity where the chemical potential differences between chains of different length are
imposed. Warren [127] considered instead the experimentally more relevant situation where
the overall polymer density distribution is imposed, in the simpler case where the polymer
consists of a binary mixture of chains of two different lengths. He made the intriguing
observation that polydispersity has almost no effect on the phase behaviour as long as the
polymer concentration is expressed in terms of an effective volume fraction (which allocates
to each polymer chain a volume proportional to the cube of its radius of gyration). The
generalization to a fully polydisperse polymer with imposed density distribution is challenging,
but work in this direction is in progress [93].

The results reviewed above all concern the case of colloidal particles of identical size.
For the more complicated case of polydisperse colloids, only rough qualitative estimates
of the effects on phase behaviour [128] and limited perturbative results for narrow size
distributions [67] exist. Recent experimental results [128] do, however, suggest that for fully
polydisperse colloids intricate—and largely unexplored—phase diagram topologies may occur,
due to the combination of gas–liquid coexistence on the one hand and re-entrant melting in
the absence of polymer on the other. The theoretical analysis of these effects remains an open
problem, but should be helped by the fact that, even for the most general case of polydisperse
colloid diameters and polydisperse polymer chain lengths, the van der Waals treatment of [121]
leads to a truncatable structure for the free energy [93].

4.6. Colloidal liquid crystals I: Maier–Saupe theory for thermotropics

So far I have only discussed spherical colloids. Non-spherical particles, shaped e.g. like rods
or plates, can form liquid crystalline phases; these are the subject of the following sections.
One of the simplest liquid crystal structures is the nematic. Like a liquid, it has no long-range
translational order, but the rods are orientationally ordered, pointing preferentially along a
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fixed direction called the nematic axis. The density distribution required to describe a nematic
phase of length-polydisperse rod-like particles thus depends on two variables, the rod length
and the rod orientation. Since the orientation of a rod can and will change over time, one has
a mixture of conserved and non-conserved degrees of freedom, and this makes the problem
rather challenging.

Liquid crystals in which phase transitions are driven primarily by changes in temperature
(rather than density) are called thermotropic. The standard model for analysing their phase
behaviour is Maier–Saupe theory [129], which captures the orientation-dependent attractions
between particles. It was originally derived on the basis of an approximate treatment of the van
der Waals attraction between large molecules, caused by fluctuating charge densities in their
electron clouds, but is actually much more widely applicable as a phenomenological theory of
orientation-dependent interparticle attractions.

Consistent with the physical intuition that in thermotropics phase transitions are driven by
temperature variations rather than changes in density, Maier–Saupe theory effectively neglects
changes in the overall particle density, so that different phases only differ in their normalized
distributions n(L,2) over rod lengths L and orientations 2. With the density having been
fixed, it is sensible to switch from the free energy density f = F/V to the free energy per
particle F/N as the basic quantity from which to analyse phase behaviour; the non-ideal part
of this is, for Maier–Saupe theory

F̃

N
= −1

2

∫
dL dL′ d2 d2′ n(L,2)n(L′, 2)u(L,L′)P2(cos θ)P2(cos θ ′). (41)

The main ingredient of this expression is the angular dependence through the second-order
Legendre polynomialsP2(cos θ) = (3 cos2 θ−1)/2; here θ is the angle of a rod with the nematic
axis. The excess free energy (41) favours nematic ordering, as it would be minimal if all rods
pointed along the nematic axis (θ = 0). The ideal part T

∫
dL d2n(L,2)[ln n(L,2)− 1] of

the free energy per particle instead prefers an isotropic phase (which, due to its random rod
orientations, has the largest orientational entropy).

In the monodisperse case, where there is only a single rod length L, Maier–Saupe theory
leads to a transition from an isotropic to a nematic phase as the temperature is lowered. This is
consistent with the intuition explained above; the scale for the transition temperature is set by
the energy scale for the attractive interaction, u(L,L). Note that there is no coexistence gap
here, i.e. no temperature region where isotropic–nematic (I–N) phase coexistence is observed.
This is because the only conserved density is the total particle density, which is assumed equal
in all phases.

In the polydisperse case, the (essentially phenomenological) function u(L,L′) determines
how the strength of the attraction varies with the rod lengths. Now there are non-trivial
conserved densities: the length distribution n(0)(L) of the parent phase has to be maintained,
and the system may be able to lower its free energy by separating into two phases with different
length distributions. Accordingly, Sluckin [130] found in a perturbative calculation for narrow
polydispersity that a coexistence gap develops in the polydisperse system; the temperature
range over which I–N coexistence is observed is proportional to the variance s2 of the parent
length distribution. Since the function u(L,L′) is of a phenomenological nature, the same
conclusion also applies if the polydisperse attribute is different, e.g. rod diameter or charge
instead of length.

The effects of stronger polydispersity (which cannot be treated perturbatively) in the
Maier–Saupe model remains unexplored; one interesting question that could be asked [131] is
whether coexistence between several nematic phases would eventually develop, as it does in
the Onsager model discussed next.
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4.7. Colloidal liquid crystals II: isotropic–nematic transition in hard rods

In lyotropic liquid crystals, the important control parameter causing phase transitions is density,
rather than temperature as in thermotropics. The paradigmatic model for lyotropic colloidal
liquid crystals is that of Onsager [132], which neglects any long-range attractions between
particles and only retains the short-range repulsions; the latter are taken to be hard (infinite
repulsion on contact). Rod-like colloidal particles approximating closely such ‘hard rods’ can
be realized experimentally (see e.g. [133]). Because of the hard interactions in the Onsager
model, the temperature can be trivially scaled out of all results and will be set to unity below.

Onsager’s treatment of the hard-rod model is based on a virial expansion in the overall
particle density. Crucially, it turns out that for long thin rods, and in the region of densities
where the I–N phase transition occurs, this virial expansion can be exactly truncated after
the first non-trivial (second virial) contribution. The intuitive reason for this is as follows.
Assume the rods have cylindrical shape, with length L and diameter D. Any given rod
excludes another, randomly oriented rod from a volume of O(L2D). The I–N transition
occurs at densities ρ0 where the number of rods in this excluded volume becomes of order
one, giving ρ0 ∼ L−2D−1. Multiplying by the rod volume (∼LD2) gives the rod volume
fraction φ ∼ D/L at the transition. For long thin rods this becomes vanishingly small, making
it plausible that higher-order terms in the virial expansion can be neglected.

To state the free energy of a system of long thin rods with polydisperse lengths L and
diameters D, let us choose a reference length L0 and reference diameter D0, and define
normalized lengths L̃ = L/L0 and diameters D̃ = D/D0. It is conventional to choose
(π/4)L2

0D0 as the unit volume to make densities non-dimensional; this is the average excluded
volume of two randomly oriented reference rods. In the Onsager limit D0/L0 → 0 (at fixed
distribution of L̃ and D̃), the excess free energy of this hard-rod system then becomes [134]

f̃ = 4

π

∫
dL̃ dL̃′ dD̃ dD̃′ d2 d2′ ρ(L̃, D̃,2)ρ(L̃′, D̃′, 2′)L̃L̃′ D̃ + D̃′

2
| sin γ (2,2′)|. (42)

The non-trivial factors in this expression arise from the fact that the excluded volume of two rods
making an angle γ with each other is LL′(D +D′)| sin γ |, or (4/π)L̃L̃′(D̃ + D̃′)| sin γ | in our
volume units. The excess free energy is a functional of the density distribution ρ(L̃, D̃,2),
which is defined such that ρ(L̃, D̃,2) dL̃ dD̃ d2 is the density of rods with lengths in an
interval dL̃ around L̃, diameters in an interval dD̃ around D̃, and orientations in a solid angle
d2 around 2.

If the orientation 2 is parametrized in terms of the rod angle θ with the nematic axis, and
the azimuthal angle ϕ, then the density distributions are independent of ϕ and the integrations
over ϕ and ϕ′ in (42) can be carried out, defining a function

K(θ, θ ′) = 4

π

∫
dϕ dϕ′ | sin γ (2,2′)| (43)

which encodes the angular dependence of the excluded-volume interaction.
For the case of monodisperse rods (see [134] for a comprehensive review), one sets

D̃ = D̃′ = 1 and L̃ = L̃′ = 1 everywhere in (42); the density distribution then becomes
a function ρ(θ) of only the rod angle θ with the nematic axis. One can separate this into
its conserved and non-conserved parts by writing ρ(θ) = ρ0n(θ); the normalized orientation
distribution function n(θ) is found for any given ρ0 by minimizing the free energy. This gives,
at least conceptually, the free energy as a function of ρ0; a double-tangent construction then
shows a coexistence gap, across which an isotropic phase of density ρ0 ≈ 3.29 coexists with
a nematic phase with ρ0 ≈ 4.19.

Consider now the case of length polydispersity (with the diameters still monodisperse).
Previous work in this area has focused on the simplified case of bi- and tridisperse mixtures
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(rods with two or three different lengths) and has uncovered—for sufficiently disparate
lengths—a number of features not observed in the monodisperse case. These include the
possibility of coexistence of several nematic phases (N–N), possibly also together with an
isotropic phase (I–N–N) [135–139]; such an I–N–N coexistence has indeed been observed
experimentally [133]. In the tridisperse case [140], up to four phases (I–N–N–N) can coexist.
For bidisperse systems with length ratios above ≈5, re-entrant phase coexistence sequences
such as I → I–N → N → I–N → N are also found [135]. At rod volume fractions
far above the onset of I–N coexistence (but, due to the Onsager limit D0/L0 → 0, still
negligible compared to unity), the phase diagram is predicted to be density independent,
with the result that N–N coexistences persist rather than being terminated by a critical point
at high density [137, 138, 140]. For bidisperse diameters and monodisperse lengths, I–I
demixing [141,142] and I–I–N coexistence can occur as additional features; a nice discussion
on why multiple isotropic phases require diameter polydispersity can be found in [142].

The studies described above show that a wealth of new phase behaviour can result even
for bidisperse hard-rod systems. For the potentially even richer case of true polydispersity,
however, results to date are very limited. The only studies of the full Onsager model
are perturbative calculations, which show a widening of the coexistence gap at the I–
N transition [130, 143] with increasing length polydispersity6. For the simpler Zwanzig
model of rods oriented along one of three perpendicular axes, a full treatment of the length
polydisperse case [70] has recently confirmed this trend. However, no evidence of N–N
coexistence was found, even for significant polydispersities; an earlier calculation for the
bidisperse case gave similar results [144]. This contrast to the predictions of the full Onsager
model can be explained intuitively as follows: when a polydisperse nematic phase splits
into two nematics containing predominantly short and long rods, respectively, it gives up
entropy of mixing but gains orientational entropy. In the Onsager model, where the rod
angles are continuous variables, the gain in orientational entropy can be arbitrarily large, thus
favouring such a phase split. (The orientational entropy tends to −∞ as the orientational
distribution function tends to a delta function.) In the Zwanzig case, on the other hand,
the maximum gain in orientational entropy is kB ln 3 (this being the difference between the
entropies of an isotropic and a fully ordered nematic phase), so nematic–nematic coexistence
is disfavoured.

It is clear, then, that a number of open questions remain regarding the effects of
polydispersity in the Onsager model of hard rods. In particular, one would like to know
under which conditions on the width and/or shape of the length and diameter distributions,
N–N, I–N–N, and I–I phase coexistences are possible. The answers cannot be inferred from the
results for the bi- or tridisperse cases; otherwise one would incorrectly predict, for example,
that any polydisperse system should show N–N coexistence since it contains some rods of
very different lengths. Equally, it remains unclear how many nematic phases can coexist far
above the I–N transition, where the phase diagram becomes density independent. Genuine
polydispersity could also cause entirely new effects, e.g. demixing into more than two isotropic
phases for sufficiently wide diameter distributions.

Tackling the polydisperse Onsager model head on is difficult, since the excess free
energy (42) does not have a truncatable structure. However, one can exploit the known

6 Chen’s analysis [143] provides an instructive example of the importance of taking fractionation into account when
studying polydisperse phase behaviour. The coexistence region for a parent phase with a given length distribution is
bounded by the isotropic cloud point—where the nematic phase first appears—at the lower end, and the nematic cloud
point—where the fractional volume occupied by the isotropic phase goes to zero—at the upper end. Chen instead
found the densities of the isotropic cloud phase and its coexisting shadow. The gap between these two densities
decreases as polydispersity increases, while the width of the coexistence region increases.
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expansion of the angular part K(θ, θ ′) of the excluded-volume interaction (see (43)) in terms
of Legendre polynomials. This takes the form [145]

K(θ, θ ′) = c0 −
∞∑
n=1

cnP2n(cos θ)P2n(cos θ ′) (44)

with positive constants cn. Truncating this series at successively higher order, one recovers
truncatable systems which approach the full Onsager model in the limit; the moment densities
that occur are defined by the weight functions wn(L̃, D̃, θ) = L̃P2n(cos θ) (as well as
L̃D̃P2n(cos θ) if diameter polydispersity is present). Judging from existing work on the
monodisperse case [135], even the lowest non-trivial order of truncation—which, for length
polydispersity, gives one conserved and one non-conserved moment density—should already
give qualitatively correct results [131].

4.8. Colloidal liquid crystals III: Hard rods at higher densities

Rod-like colloidal particles should, at sufficiently high densities, form crystalline solids; a
smectic phase (where the particles are arranged into layers that are perpendicular to their
preferred orientation, but lack translational order within the layers) may also intervene between
the nematic and the crystal phase. Neither smectic nor crystal phases are accessible within
the Onsager theory of long thin rods as outlined above, however: they occur at rod volume
fractions of order unity, and hence densities ρ0 ∼ L−1D−2; the densities ρ0 ∼ L−2D−1 at
the isotropic–nematic transition are much smaller (in fact infinitely so, in the Onsager limit
D/L → 0).

Studying the effects of polydispersity in this high-density regime is an enormous challenge,
in part because there is still significant controversy over the most appropriate free energy
functionals in this region of the phase diagram [146–148]. Some qualitative features are
known, however. Significant length polydispersity, for example, should make smectic (and
possibly also crystalline) phases less favourable, since a broad range of rod lengths will be
difficult to accommodate within these structures. Instead, one expects to see columnar phases,
where the rods are arranged into columns which are themselves packed into a two-dimensional
hexagonal lattice; since the rods can slide freely within each column, such columnar phases
can easily tolerate a spread of rod lengths. Sluckin [130] indeed found, within a perturbative
treatment, that the onset of smectic order should be delayed (i.e. shifted to higher densities)
by polydispersity in rod lengths, and that eventually the smectic phase should disappear in
favour of a columnar phase. Bates and Frenkel [146] arrived at similar conclusions from their
semi-grandcanonical (variable polydispersity) simulations: when the polydispersity increased
beyond a terminal value of s ≈ 18%, the smectic phase was no longer stable. They also argued
that length polydispersity should destabilize the crystal in favour of the columnar phase, though
disagreeing on the density dependence of the relative stability of the two phases with an earlier
density functional treatment [147].

One final new effect of length polydispersity on hard-rod phases at high densities is
the possibility that, on increasing the density, nematic–nematic demixing might occur before
the transition to a smectic or columnar phase [149]. This seems entirely plausible, given
that the Onsager treatment described above predicts N–N demixing (in sufficiently bidisperse
systems) at densities arbitrarily far above the I–N transition. The behaviour of such demixed
nematics at higher densities is an entirely open question; they might, for example, form two
demixed (fractionated) smectics rather than a single columnar phase. Another area that remains
unexplored is the effect of diameter polydispersity on the high-density behaviour: this would
be expected, for example, to disadvantage columnar phases against smectics, thus producing
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an effect opposite to that of length polydispersity.

4.9. Colloidal liquid crystals IV: Plates and rod–plate mixtures

Liquid crystalline phases can also occur in suspensions of plate-like (rather than rod-like) parti-
cles. If the particles have hard interactions and are monodisperse, then one expects the sequence
isotropic (I) → nematic (N) → columnar → crystalline as the particle density is increased. As
for rod-like particles, the I–N transition (observed experimentally in [150]) can be analysed
using Onsager’s second virial theory, although due to the different scaling of the higher-order
virial coefficients the results do not become exact even in the limit of very thin plates.

The effect of polydispersity on the phase behaviour of plate-like colloids is only just
beginning to be understood. Computer simulations of thin hard plates with polydisperse
diameters have shown, for example, that the isotropic–nematic coexistence gap widens
with polydispersity [151]. (Though the usual caveat applies regarding the results of semi-
grandcanonical simulations, which address the case of variable rather than fixed polydispersity.)
The fractionation of plate diameters between I and N phases was observed to be rather weak.
Plates with polydisperse thicknesses, on the other hand, displayed strong fractionation in
experiments on the I–N transition [152].

At higher densities, experiments have shown the columnar phase to be remarkably robust
against polydispersity in plate diameters [153], tolerating polydispersities up to s ≈ 25%.
On further increasing the density, a crossover to smectic ordering was observed; this seems
plausible, since a spread in particle diameters should prevent an efficient packing of the columns
of particles at high densities, favouring instead the layered structure of a smectic.

The addition of non-adsorbing polymer produces further interesting features in the phase
behaviour of polydisperse platelets. Experimentally, a strong widening of the isotropic–
nematic coexistence gap was observed [152], along with the occurrence of two separate
isotropic phases. The latter effect seems to be similar to the ‘splitting’ of the hard-sphere
fluid into a gas and a liquid by the addition of polymer.

Even more complex phase behaviour, finally, can occur in mixtures of rod- and plate-like
colloidal particles. Recent experiments [154,155] show dramatic polydispersity effects: up to
five coexisting phases are found, rather than the maximum of three expected for monodisperse
hard rods and plates.

Most of the above results for systems involving plate-like colloids remain poorly
understood theoretically; open questions include, for example, the contrasting effects of
diameter and thickness polydispersity at the I–N transition (especially as regards fractionation),
and the precise topologies of the phase diagrams for plate–polymer and plate–rod mixtures. At
least for the phenomena involving isotropic and nematic phases, progress should be possible
using second virial theories of the Onsager type; if the angular dependences are truncated as
described after equation (44), free energy expressions with a truncatable structure will result
and can be studied using for example the moment free energy method.

5. Outlook

Throughout this review, I have focused entirely on equilibrium bulk phase behaviour. Beyond
this, there are significant open challenges in understanding the effects of polydispersity on
inhomogeneous phases and on phase transition kinetics.
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5.1. Inhomogeneities

Inhomogeneities come to the fore when one is interested in, for example, the behaviour of
a polydisperse material near an interface or a wall; one might want to calculate e.g. the
effect of polydispersity on interfacial tensions or other interfacial thermodynamic properties.
The description of an inhomogeneous system requires a particle density distribution ρ(r, σ )

which depends not only on the polydisperse attribute σ but also on the spatial location r;
the density distribution ρ(σ) used above to describe the state of bulk materials is found from
this by integration over the sample volume, ρ(σ) = ∫

dr ρ(r, σ ). In dependence on ρ(r, σ )

one can again define a free energy f ([ρ(r, σ )])—conventionally referred to as a ‘density
functional’—that assumes its minimal value at the equilibrium density distribution ρ(r, σ )

(see e.g. [156, 157] for reviews of density functional theory).
In principle this approach can also be used to obtain from first principles the free energy

of bulk phases with spatial ordering, such as hard-sphere crystals: to get the free energy
f ([ρ(σ)]) that I have used throughout this paper, one would have to minimize f ([ρ(r, σ )])
over all ρ(r, σ ) with the given ρ(σ) = ∫

dr ρ(r, σ ). With orientational degrees of freedom
included appropriately, the same method would also apply e.g. to the smectic, columnar and
crystalline phases of rod- and plate-like colloids. In practice, this programme can of course only
be implemented very approximately: to start with, the full free energy functional f [ρ(r, σ )]
is not known exactly; and the minimization over the spatial density distribution can normally
only be carried out over a small number of assumed candidate structures, parametrized by
appropriate variational parameters.

What, then, are the specific challenges in the treatment of inhomogeneities that arise
from the presence of polydispersity? Firstly, there is the problem of how to incorporate
polydispersity into the construction of approximate density functionals. For polydisperse hard
spheres, some significant progress in this direction has been made recently by Pagonabarraga
et al [158], exploiting again a moment structure for the excess part of the free energy: the
moments ρi then generalize to spatially varying densities ρi(r), defined as local averages
of the full density distribution ρ(r, σ ). For spatially extended objects such as polymers,
the most appropriate way of carrying out the local averaging is by no means obvious [159]; a
recent proposal models the polymers as interpenetrable particles with a fixed monomer density
profile about their centre, chosen to reproduce the correct structure factor for ideal polymer
chains [160].

The second challenge is to use density functionals for polydisperse systems in practical
calculations of interfacial properties, etc. When the excess free energy has a dependence only
on certain spatially varying moment densities ρi(r), this can be done relatively efficiently:
the problem then effectively reduces to that of a conventional density functional theory for a
discrete mixture of quasi-species [158, 160].

5.2. Phase separation kinetics

The kinetics of phase separation in polydisperse systems is a very challenging and to a large
extent unsolved problem. Above, we have seen that the description of equilibrium phase
behaviour can be substantially simplified through the use of moment densities; a natural
question to ask is then whether moment densities remain useful in understanding the kinetics
of phase separation. Warren [159] has in fact argued that in many systems the zeroth moment
(total particle density) ρ0 should relax much more rapidly—by collective diffusion—than can
the higher moments, whose equilibration requires interdiffusion of different particle species.
This leads to the hypothesis that phase separation could proceed in two stages: in the first
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stage, only the densities of coexisting phases would equilibrate, while their compositions
would remain equal (‘quenched’) to that of the parent phase; the kinetics in the second stage
would be much slower and bring the compositions of the phases to equilibrium by fractionation.
Of course, the onset of phase coexistence with all compositions quenched will generally occur
at a different point in the phase diagram compared to the case where full fractionation is
allowed. Experimentally observed cloud and shadow curves, for example, could therefore be
quite strongly dependent on the timescale of a phase separation experiment, probing behaviour
ranging from the quenched to the fully fractionated phase diagram.

In principle, it is of course possible to treat the phase separation kinetics in polydisperse
systems by binning the range of the polydisperse attribute σ , reducing the problem to the
dynamics of a finite mixture of discrete species. In general one expects this approach to be
infeasible numerically; Clarke [161] has recently shown, however, that it can be efficiently
implemented to study the early stages of phase separation of polydisperse polymers which are
suddenly cooled into a two-phase region of their phase diagram.

Finally, there is the intriguing possibility that the kinetics of phase separation (and, in
particular, fractionation) in polydisperse systems could be so slow as to make the equilibrium
phase behaviour unobservable in practice. Evans and Holmes [97] have recently argued
that this is the case for polydisperse hard-sphere crystals: once particles are incorporated
into a crystal nucleus growing from the hard-sphere fluid, they essentially no longer diffuse
on experimental timescales. The size distribution of particles in the crystal will thus be
‘frozen in’, and determined by the mechanism of crystal growth rather than the conditions
of thermodynamic equilibrium. A full understanding of such non-equilibrium effects on the
experimentally observed phase behaviour of colloidal systems remains a significant challenge
for future work.

6. Conclusions

In this review, I have attempted to give an overview of the current state of the art in the field of
polydisperse phase equilibria, focusing on theoretical approaches for predicting coexistence
between bulk phases. Polydisperse systems are characterized by an effectively infinite number
of distinguishable particle species (and thus of conserved densities), and this makes even the
apparently simple task of predicting phase equilibria from a known free energy (functional)
highly non-trivial. As reviewed in section 3, a number of methods have been developed
to tackle this problem; the most detailed understanding of phase behaviour can be achieved
for truncatable free energies, whose excess part depends only on a number of moments of
the density distribution ρ(σ) rather than on all its details. As shown in section 4, many
(approximate) free energies that can be used to describe polymeric and colloidal system
fall into this class. The phase behaviour that even these relatively simple models produce
is extremely rich compared to that of monodisperse systems, and many intriguing questions
remain unanswered. The same is true, to an even greater degree, of the largely unexplored areas
of interfacial behaviour and phase separation kinetics which I touched on briefly in section 5.
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